3 resultados para LS-DYNA

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a sparse number of credible source models available from large-magnitude past earthquakes. A stochastic source model generation algorithm thus becomes necessary for robust risk quantification using scenario earthquakes. We present an algorithm that combines the physics of fault ruptures as imaged in laboratory earthquakes with stress estimates on the fault constrained by field observations to generate stochastic source models for large-magnitude (Mw 6.0-8.0) strike-slip earthquakes. The algorithm is validated through a statistical comparison of synthetic ground motion histories from a stochastically generated source model for a magnitude 7.90 earthquake and a kinematic finite-source inversion of an equivalent magnitude past earthquake on a geometrically similar fault. The synthetic dataset comprises of three-component ground motion waveforms, computed at 636 sites in southern California, for ten hypothetical rupture scenarios (five hypocenters, each with two rupture directions) on the southern San Andreas fault. A similar validation exercise is conducted for a magnitude 6.0 earthquake, the lower magnitude limit for the algorithm. Additionally, ground motions from the Mw7.9 earthquake simulations are compared against predictions by the Campbell-Bozorgnia NGA relation as well as the ShakeOut scenario earthquake. The algorithm is then applied to generate fifty source models for a hypothetical magnitude 7.9 earthquake originating at Parkfield, with rupture propagating from north to south (towards Wrightwood), similar to the 1857 Fort Tejon earthquake. Using the spectral element method, three-component ground motion waveforms are computed in the Los Angeles basin for each scenario earthquake and the sensitivity of ground shaking intensity to seismic source parameters (such as the percentage of asperity area relative to the fault area, rupture speed, and risetime) is studied.

Under plausible San Andreas fault earthquakes in the next 30 years, modeled using the stochastic source algorithm, the performance of two 18-story steel moment frame buildings (UBC 1982 and 1997 designs) in southern California is quantified. The approach integrates rupture-to-rafters simulations into the PEER performance based earthquake engineering (PBEE) framework. Using stochastic sources and computational seismic wave propagation, three-component ground motion histories at 636 sites in southern California are generated for sixty scenario earthquakes on the San Andreas fault. The ruptures, with moment magnitudes in the range of 6.0-8.0, are assumed to occur at five locations on the southern section of the fault. Two unilateral rupture propagation directions are considered. The 30-year probabilities of all plausible ruptures in this magnitude range and in that section of the fault, as forecast by the United States Geological Survey, are distributed among these 60 earthquakes based on proximity and moment release. The response of the two 18-story buildings hypothetically located at each of the 636 sites under 3-component shaking from all 60 events is computed using 3-D nonlinear time-history analysis. Using these results, the probability of the structural response exceeding Immediate Occupancy (IO), Life-Safety (LS), and Collapse Prevention (CP) performance levels under San Andreas fault earthquakes over the next thirty years is evaluated.

Furthermore, the conditional and marginal probability distributions of peak ground velocity (PGV) and displacement (PGD) in Los Angeles and surrounding basins due to earthquakes occurring primarily on the mid-section of southern San Andreas fault are determined using Bayesian model class identification. Simulated ground motions at sites within 55-75km from the source from a suite of 60 earthquakes (Mw 6.0 − 8.0) primarily rupturing mid-section of San Andreas fault are considered for PGV and PGD data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.

The following is my formulation of the Cesari fixed point method:

Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.

Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:

(i) Py = PWy.

(ii) y = (P + (I - P)W)y.

Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:

(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).

(2) The function y just defined is continuous from PГ into B.

(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.

Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).

The three theorems of this thesis can now be easily stated.

Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.

Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:

(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖

(2)P2Г is convex.

Then i(Г, W, P1) = i(Г, W, P2).

Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).

Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constitutive modeling in granular materials has historically been based on macroscopic experimental observations that, while being usually effective at predicting the bulk behavior of these type of materials, suffer important limitations when it comes to understanding the physics behind grain-to-grain interactions that induce the material to macroscopically behave in a given way when subjected to certain boundary conditions.

The advent of the discrete element method (DEM) in the late 1970s helped scientists and engineers to gain a deeper insight into some of the most fundamental mechanisms furnishing the grain scale. However, one of the most critical limitations of classical DEM schemes has been their inability to account for complex grain morphologies. Instead, simplified geometries such as discs, spheres, and polyhedra have typically been used. Fortunately, in the last fifteen years, there has been an increasing development of new computational as well as experimental techniques, such as non-uniform rational basis splines (NURBS) and 3D X-ray Computed Tomography (3DXRCT), which are contributing to create new tools that enable the inclusion of complex grain morphologies into DEM schemes.

Yet, as the scientific community is still developing these new tools, there is still a gap in thoroughly understanding the physical relations connecting grain and continuum scales as well as in the development of discrete techniques that can predict the emergent behavior of granular materials without resorting to phenomenology, but rather can directly unravel the micro-mechanical origin of macroscopic behavior.

In order to contribute towards closing the aforementioned gap, we have developed a micro-mechanical analysis of macroscopic peak strength, critical state, and residual strength in two-dimensional non-cohesive granular media, where typical continuum constitutive quantities such as frictional strength and dilation angle are explicitly related to their corresponding grain-scale counterparts (e.g., inter-particle contact forces, fabric, particle displacements, and velocities), providing an across-the-scale basis for better understanding and modeling granular media.

In the same way, we utilize a new DEM scheme (LS-DEM) that takes advantage of a mathematical technique called level set (LS) to enable the inclusion of real grain shapes into a classical discrete element method. After calibrating LS-DEM with respect to real experimental results, we exploit part of its potential to study the dependency of critical state (CS) parameters such as the critical state line (CSL) slope, CSL intercept, and CS friction angle on the grain's morphology, i.e., sphericity, roundness, and regularity.

Finally, we introduce a first computational algorithm to ``clone'' the grain morphologies of a sample of real digital grains. This cloning algorithm allows us to generate an arbitrary number of cloned grains that satisfy the same morphological features (e.g., roundness and aspect ratio) displayed by their real parents and can be included into a DEM simulation of a given mechanical phenomenon. In turn, this will help with the development of discrete techniques that can directly predict the engineering scale behavior of granular media without resorting to phenomenology.