943 resultados para LONGITUDINAL MODE-OPERATION
Resumo:
Valveless pulsejets are extremely simple aircraft engines; essentially cleverly designed tubes with no moving parts. These engines utilize pressure waves, instead of machinery, for thrust generation, and have demonstrated thrust-to-weight ratios over 8 and thrust specific fuel consumption levels below 1 lbm/lbf-hr – performance levels that can rival many gas turbines. Despite their simplicity and competitive performance, they have not seen widespread application due to extremely high noise and vibration levels, which have persisted as an unresolved challenge primarily due to a lack of fundamental insight into the operation of these engines. This thesis develops two theories for pulsejet operation (both based on electro-acoustic analogies) that predict measurements better than any previous theory reported in the literature, and then uses them to devise and experimentally validate effective noise reduction strategies. The first theory analyzes valveless pulsejets as acoustic ducts with axially varying area and temperature. An electro-acoustic analogy is used to calculate longitudinal mode frequencies and shapes for prescribed area and temperature distributions inside an engine. Predicted operating frequencies match experimental values to within 6% with the use of appropriate end corrections. Mode shapes are predicted and used to develop strategies for suppressing higher modes that are responsible for much of the perceived noise. These strategies are verified experimentally and via comparison to existing models/data for valveless pulsejets in the literature. The second theory analyzes valveless pulsejets as acoustic systems/circuits in which each engine component is represented by an acoustic impedance. These are assembled to form an equivalent circuit for the engine that is solved to find the frequency response. The theory is used to predict the behavior of two interacting pulsejet engines. It is validated via comparison to experiment and data in the literature. The technique is then used to develop and experimentally verify a method for operating two engines in anti-phase without interfering with thrust production. Finally, Helmholtz resonators are used to suppress higher order modes that inhibit noise suppression via anti-phasing. Experiments show that the acoustic output of two resonator-equipped pulsejets operating in anti-phase is 9 dBA less than the acoustic output of a single pulsejet.
Resumo:
Structural identification (St-Id) can be considered as the process of updating a finite element (FE) model of a structural system to match the measured response of the structure. This paper presents the St-Id of a laboratory-based steel through-truss cantilevered bridge with suspended span. There are a total of 600 degrees of freedom (DOFs) in the superstructure plus additional DOFs in the substructure. The St-Id of the bridge model used the modal parameters from a preliminary modal test in the objective function of a global optimisation technique using a layered genetic algorithm with patternsearch step (GAPS). Each layer of the St-Id process involved grouping of the structural parameters into a number of updating parameters and running parallel optimisations. The number of updating parameters was increased at each layer of the process. In order to accelerate the optimisation and ensure improved diversity within the population, a patternsearch step was applied to the fittest individuals at the end of each generation of the GA. The GAPS process was able to replicate the mode shapes for the first two lateral sway modes and the first vertical bending mode to a high degree of accuracy and, to a lesser degree, the mode shape of the first lateral bending mode. The mode shape and frequency of the torsional mode did not match very well. The frequencies of the first lateral bending mode, the first longitudinal mode and the first vertical mode matched very well. The frequency of the first sway mode was lower and that of the second sway mode was higher than the true values, indicating a possible problem with the FE model. Improvements to the model and the St-Id process will be presented at the upcoming conference and compared to the results presented in this paper. These improvements will include the use of multiple FE models in a multi-layered, multi-solution, GAPS St-Id approach.
Resumo:
This paper proposes a multilevel inverter which produces hexagonal voltage space vector structure in lower modulation region and a 12-sided polygonal space vector structure in the over-modulation region. Normal conventional multilevel inverter produces 6n +/- 1 (n=odd) harmonics in the phase voltage during over-modulation and in the extreme square wave mode operation. However, this inverter produces a 12-sided polygonal space vector location leading to the elimination of 6n 1 (n=odd) harmonics in over-modulation region extending to a final 12-step mode operation. The inverter consists of three conventional cascaded two level inverters with asymmetric dc bus voltages. The switching frequency of individual inverters is kept low throughout the modulation index. In the low speed region, hexagonal space phasor based PWM scheme and in the higher modulation region, 12-sided polygonal voltage space vector structure is used. Experimental results presented in this paper shows that the proposed converter is suitable for high power applications because of low harmonic distortion and low switching losses.
Resumo:
This paper proposes a simple current error space vector based hysteresis controller for two-level inverter fed Induction Motor (IM) drives. This proposed hysteresis controller retains all advantages of conventional current error space vector based hysteresis controllers like fast dynamic response, simple to implement, adjacent voltage vector switching etc. The additional advantage of this proposed hysteresis controller is that it gives a phase voltage frequency spectrum exactly similar to that of a constant switching frequency space vector pulse width modulated (SVPWM) inverter. In this proposed hysteresis controller the boundary is computed online using estimated stator voltages along alpha and beta axes thus completely eliminating look up tables used for obtaining parabolic hysteresis boundary proposed in. The estimation of stator voltage is carried out using current errors along alpha and beta axes and steady state model of induction motor. The proposed scheme is simple and capable of taking inverter upto six step mode operation, if demanded by drive system. The proposed hysteresis controller based inverter fed drive scheme is simulated extensively using SIMULINK toolbox of MATLAB for steady state and transient performance. The experimental verification for steady state performance of the proposed scheme is carried out on a 3.7kW IM.
Resumo:
Scan circuit is widely practiced DFT technology. The scan testing procedure consist of state initialization, test application, response capture and observation process. During the state initialization process the scan vectors are shifted into the scan cells and simultaneously the responses captured in last cycle are shifted out. During this shift operation the transitions that arise in the scan cells are propagated to the combinational circuit, which inturn create many more toggling activities in the combinational block and hence increases the dynamic power consumption. The dynamic power consumed during scan shift operation is much more higher than that of normal mode operation.
Resumo:
This paper proposes a new straight forward technique based on dynamic inversion, which is applied for tracking the pilot commands in high performance aircrafts.Pilot commands assumed in longitudinal mode are normal acceleration and total velocity(while roll angle and lateral acceleration are maintained at zero). In lateral mode, roll rate and total velocity are used as pilot commands (while climb rate and lateral acceleration are maintained at zero). Ensuring zero lateral acceleration leads to a better turn co-ordination. A six degree-of-freedom model of F-16 aircraft is used for both control design as well as simulation studies. Promising results are obtained which are found to be superior as compared to an existing approach (which is also based on dynamic inversion). The new approach has two potential benefits, namely reduced oscillatory response and reduced control magnitude. Another advantage of this approach is that it leads to a significant reduction of tuning parameters in the control design process.
Resumo:
This paper proposes a current-error space-vector-based hysteresis controller with online computation of boundary for two-level inverter-fed induction motor (IM) drives. The proposed hysteresis controller has got all advantages of conventional current-error space-vector-based hysteresis controllers like quick transient response, simplicity, adjacent voltage vector switching, etc. Major advantage of the proposed controller-based voltage-source-inverters-fed drive is that phase voltage frequency spectrum produced is exactly similar to that of a constant switching frequency space-vector pulsewidth modulated (SVPWM) inverter. In this proposed hysteresis controller, stator voltages along alpha- and beta-axes are estimated during zero and active voltage vector periods using current errors along alpha- and beta-axes and steady-state model of IM. Online computation of hysteresis boundary is carried out using estimated stator voltages in the proposed hysteresis controller. The proposed scheme is simple and capable of taking inverter upto six-step-mode operation, if demanded by drive system. The proposed hysteresis-controller-based inverter-fed drive scheme is experimentally verified. The steady state and transient performance of the proposed scheme is extensively tested. The experimental results are giving constant frequency spectrum for phase voltage similar to that of constant frequency SVPWM inverter-fed drive.
Resumo:
This paper reports on the fabrication of cantilever silicon-on-insulator (SOI) optical waveguides and presents solutions to the challenges of using a very thin 260-nm active silicon layer in the SOI structure to enable single-transverse-mode operation of the waveguide with minimal optical transmission losses. In particular, to ameliorate the anchor effect caused by the mean stress difference between the active silicon layer and buried oxide layer, a cantilever flattening process based on Ar plasma treatment is developed and presented. Vertical deflections of 0.5 mu m for 70-mu m-long cantilevers are mitigated to within few nanometers. Experimental investigations of cantilever mechanical resonance characteristics confirm the absence of significant detrimental side effects. Optical and mechanical modeling is extensively used to supplement experimental observations. This approach can satisfy the requirements for on-chip simultaneous readout of many integrated cantilever sensors in which the displacement or resonant frequency changes induced by analyte absorption are measured using an optical-waveguide-based division multiplexed system.
Resumo:
Bulk n-lnSb is investigated at a heterodyne detector for the submillimeter wavelength region. Two modes or operation are investigated: (1) the Rollin or hot electron bolometer mode (zero magnetic field), and (2) the Putley mode (quantizing magnetic field). The highlight of the thesis work is the pioneering demonstration or the Putley mode mixer at several frequencies. For example, a double-sideband system noise temperature of about 510K was obtained using a 812 GHz methanol laser for the local oscillator. This performance is at least a factor or 10 more sensitive than any other performance reported to date at the same frequency. In addition, the Putley mode mixer achieved system noise temperatures of 250K at 492 GHz and 350K at 625 GHz. The 492 GHz performance is about 50% better and the 625 GHz is about 100% better than previous best performances established by the Rollin-mode mixer. To achieve these results, it was necessary to design a totally new ultra-low noise, room-temperature preamp to handle the higher source impedance imposed by the Putley mode operation. This preamp has considerably less input capacitance than comparably noisy, ambient designs.
In addition to advancing receiver technology, this thesis also presents several novel results regarding the physics of n-lnSb at low temperatures. A Fourier transform spectrometer was constructed and used to measure the submillimeter wave absorption coefficient of relatively pure material at liquid helium temperatures and in zero magnetic field. Below 4.2K, the absorption coefficient was found to decrease with frequency much faster than predicted by Drudian theory. Much better agreement with experiment was obtained using a quantum theory based on inverse-Bremmstrahlung in a solid. Also the noise of the Rollin-mode detector at 4.2K was accurately measured and compared with theory. The power spectrum is found to be well fit by a recent theory of non- equilibrium noise due to Mather. Surprisingly, when biased for optimum detector performance, high purity lnSb cooled to liquid helium temperatures generates less noise than that predicted by simple non-equilibrium Johnson noise theory alone. This explains in part the excellent performance of the Rollin-mode detector in the millimeter wavelength region.
Again using the Fourier transform spectrometer, spectra are obtained of the responsivity and direct detection NEP as a function of magnetic field in the range 20-110 cm-1. The results show a discernable peak in the detector response at the conduction electron cyclotron resonance frequency tor magnetic fields as low as 3 KG at bath temperatures of 2.0K. The spectra also display the well-known peak due to the cyclotron resonance of electrons bound to impurity states. The magnitude of responsivity at both peaks is roughly constant with magnet1c field and is comparable to the low frequency Rollin-mode response. The NEP at the peaks is found to be much better than previous values at the same frequency and comparable to the best long wavelength results previously reported. For example, a value NEP=4.5x10-13/Hz1/2 is measured at 4.2K, 6 KG and 40 cm-1. Study of the responsivity under conditions of impact ionization showed a dramatic disappearance of the impurity electron resonance while the conduction electron resonance remained constant. This observation offers the first concrete evidence that the mobility of an electron in the N=0 and N=1 Landau levels is different. Finally, these direct detection experiments indicate that the excellent heterodyne performance achieved at 812 GHz should be attainable up to frequencies of at least 1200 GHz.
Resumo:
We have found that the optical power of a laser diode (LD) does not change with the injected light intensity that is modulated when its injection current is at some specific values. The amplitude of optical power change of the LD varies periodically with the increase of the injection current. It is made clear through theoretical analysis that these phenomena are caused by gain compression and interband carrier absorption of the LD that depend on longitudinal mode competition, bandgap-shrinkage effects, thermal conduction, and so on. Our experimental results make it easy to eliminate optical power change of LDs. We only need to choose a proper value of the injection current. (c) 2005 Optical Society of America.
Resumo:
The mode-area, scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can operate in a single mode with possible scaling up to 300 mu m in core diameter with numerical aperture 0.1.
Resumo:
对我们所制作的λ/4相移DFB掺Yb3+光纤激光器的运行特性进行了研究。研究表明:光纤端面菲涅尔反射会破坏激光器的单纵模运行,因此为获得稳定的羊纵模运行须使用隔离器或甘油清除光纤端面菲涅尔反射;机械扰动则会使沿光纤传输的单偏振激光的偏振面发生变化;温度的涨落则会引起激光输出功率的不稳定涨落。所研制à/4相移DFB单纵模、单偏振激光器具有如下特性:阈值为38mW,当泵浦功率为140 mW时,获得了25mW的1053 nm单 纵模、羊偏振激光.偏振消光比约30 dB,单纵模激光功率涨落小于2%,边模抑制比约6
Resumo:
提出了一种基于光纤环形镜的全光脉冲整形器。该全光脉冲整形器利用波分复用器将控制光脉冲引入光纤环形镜中,控制光脉冲由于交叉相位调制在信号光上产生了非线性附加相移。信号光在耦合器中发生干涉,经过整形的信号光脉冲从脉冲整形器的出射端出射,信号脉冲的波形由非线性附加相移的波形决定。实验中.利用对控制脉冲光谱整形和啁啾展宽的方法来对控制脉冲进行时间脉冲的整形,该全光脉冲整形器实现了对单纵模激光的脉冲整形,同时实现了飞秒脉冲和单纵模整形脉冲的精确同步。在理论上数值计算了该全光脉冲整形器的输出特性,理论计算结果和实验结
Resumo:
分析了布里渊分布式光纤传感技术原理,采用自行研制的光纤单纵模分布反馈(DFB)激光器结合电光调制技术,利用相干检测技术,对布里渊微弱后向散射信号进行检测。通过改进滤波放大技术,对微弱后向散射光信号进行有效放大,再用扰偏技术及信号采样平均处理,实现对光纤传感器后向布里渊散射信号在11 GHz高频段直接采集显示。结果表明,探测所得布里渊散射信号峰值功率可达50 mV,能有效降低解调系统信号检测难度,改善了系统信噪比(SNR)。初步实验结果证明了该方案的可行性。
Resumo:
采用遮挡法引入相移制作了掺Yb相移光纤光栅(PS-FBG)。在制作光栅的过程中,将其作为激光器的谐振腔,通过监测激光器的输出功率来确定相移大小。当激光器的输出功率开始下降时,停止曝光,此时引入的相移为π/2。为了使光栅的特性尽快稳定下来需要对光栅进行退火,这将导致引入的相移小于π/2。为了弥补退火过程中引起的相移降低,需要对退火后的光栅进行二次曝光,以使光栅的相移恢复π/2。利用该方法制作了一只光纤光栅激光器。当抽运功率为100 mW时,获得了25 mW的输出功率,信噪比(SNR)为60 dB。在1 h内