765 resultados para LIQUID-EQUILIBRIA
Resumo:
The pseudoternary section FeO-ZnO-(CaO + SiO2) with a CaO/SiO2 weight ratio of 0.71 in equilibrium with metallic iron has been experimentally investigated in the temperature range from 1000 degreesC to 1300 degreesC (1273 to 1573 K). The liquidus surface in this pseudoternary. section has been determined in the composition range of 0 to 33 wt pct ZnO and 30 to 70 wt pct (CaO + SiO2)The system contains primary-phase fields of wustite (FexZn1-xO1+y), zincite (ZnzFe1-zO), fayalite (FewZn2-wSiO4), melilite (Ca2ZnuFe1-uSi2O7), and pseudowollastonite (CaSiO3). The phase equilibria involving the liquid phase and the solid solutions have also been measured.
Resumo:
A novel and simple method for determination of micropore network connectivity of activated carbon using liquid phase adsorption is presented in this paper. The method is applied to three different commercial carbons with eight different liquid phase adsorptives as probes. The effect of the pore network connectivity on the prediction of multicomponent adsorption equilibria was also studied. For this purpose, the Ideal Adsorbed Solution Theory (IAST) was used in conjuction with the modified DR single component isotherm. The results of comparison with experimental data show that incorporation of the connectivity, and consideration of percolation processes associated with the different molecular sizes of the adsorptives in the mixture, can improve the performance of the IAST in predicting multicomponent adsorption equilibria.
Resumo:
A simple percolation theory-based method for determination of the pore network connectivity using liquid phase adsorption isotherm data combined with a density functional theory (DFT)-based pore size distribution is presented in this article. The liquid phase adsorption experiments have been performed using eight different esters as adsorbates and microporous-mesoporous activated carbons Filtrasorb-400, Norit ROW 0.8 and Norit ROX 0.8 as adsorbents. The density functional theory (DFT)-based pore size distributions of the carbons were obtained using DFT analysis of argon adsorption data. The mean micropore network coordination numbers, Z, of the carbons were determined based on DR characteristic plots and fitted saturation capacities using percolation theory. Based on this method, the critical molecular sizes of the model compounds used in this study were also obtained. The incorporation of percolation concepts in the prediction of multicomponent adsorption equilibria is also investigated, and found to improve the performance of the ideal adsorbed solution theory (IAST) model for the large molecules utilized in this study. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We investigate the liquid-vapor interface of a model of patchy colloids. This model consists of hard spheres decorated with short-ranged attractive sites ("patches") of different types on their surfaces. We focus on a one-component fluid with two patches of type A and nine patches of type B (2A9B colloids), which has been found to exhibit reentrant liquid-vapor coexistence curves and very low-density liquid phases. We have used the density-functional theory form of Wertheim's first-order perturbation theory of association, as implemented by Yu and Wu [J. Chem. Phys. 116, 7094 (2002)], to calculate the surface tension, and the density and degree of association profiles, at the liquid-vapor interface of our model. In reentrant systems, where AB bonds dominate, an unusual thickening of the interface is observed at low temperatures. Furthermore, the surface tension versus temperature curve reaches a maximum, in agreement with Bernardino and Telo da Gama's mesoscopic Landau-Safran theory [Phys. Rev. Lett. 109, 116103 (2012)]. If BB attractions are also present, competition between AB and BB bonds gradually restores the monotonic temperature dependence of the surface tension. Lastly, the interface is "hairy," i.e., it contains a region where the average chain length is close to that in the bulk liquid, but where the density is that of the vapor. Sufficiently strong BB attractions remove these features, and the system reverts to the behavior seen in atomic fluids.
Resumo:
The paper reports viscosity measurements of compressed liquid dipropyl (DPA) and dibutyl (DBA) adipates obtained with two vibrating wire sensors developed in our group. The vibrating wire instruments were operated in the forced oscillation, or steady-state mode. The viscosity measurements of DPA were carried out in a range of pressures up to 18. MPa and temperatures from (303 to 333). K, and DBA up to 65. MPa and temperature from (303 to 373). K, covering a total range of viscosities from (1.3 to 8.3). mPa. s. The required density data of the liquid samples were obtained in our laboratory using an Anton Paar vibrating tube densimeter and were reported in a previous paper. The viscosity results were correlated with density, using a modified hard-spheres scheme. The root mean square deviation of the data from the correlation is less than (0.21 and 0.32)% and the maximum absolute relative deviations are within (0.43 and 0.81)%, for DPA and DBA respectively. No data for the viscosity of both adipates could be found in the literature. Independent viscosity measurements were also performed, at atmospheric pressure, using an Ubbelohde capillary in order to compare with the vibrating wire results. The expanded uncertainty of these results is estimated as ±1.5% at a 95% confidence level. The two data sets agree within the uncertainty of both methods. © 2015 Published by Elsevier B.V.
Resumo:
Vapor - liquid equilibrium data for the binary systems: Perfluoromethylcyclohexane + n-Hexane and Perfluoromethylcyclohexane + 1-Hexene were determined at 93.3 KPa and 328.15 K. The vapor pressure for the pure components were also measured to calculate the Antoine constants. The data were correlated by using the Van-Laar, Margules, Wilson, NRTL and UNIQUAC equations. UNIFAC group-contribution parameters between CH, and CF,, and CH,=CH and CF, were also calculated.
Resumo:
The Gronnedal-Ika complex is dominated by layered nepheline syenites which were intruded by a xenolithic syenite and a central plug of calcite to calcite-siderite carbonatite. Aegirine-augite, alkali feldspar and nepheline are the major mineral phases in the syenites, along with rare calcite. Temperatures of 680-910degreesC and silica activities of 0.28-0.43 were determined for the crystallization of the syenites on the basis of mineral equilibria. Oxygen fugacities, estimated using titanomagnetite compositions, were between 2 and 5 log units above the fayalite-magnetite-quartz buffer during the magmatic stage. Chondrite-normalized REE patterns of magmatic calcite in both carbonatites and syenites are characterized by REE enrichment (La-CN-Yb-CN = 10-70). Calcite from the carbonatites has higher Ba (similar to5490 ppm) and lower HREE concentrations than calcite from the syenites (54-106 ppm Ba). This is consistent with the behavior of these elements during separation of immiscible silicate-carbonate liquid pairs. epsilon(Nd)(T = 1.30 Ga) values of clinopyroxenes from the syenites vary between +1.8 and +2.8, and epsilon(Nd)(T) values of whole-rock carbonatites range from +2.4 to +2.8. Calcite from the carbonatites has delta(18)O values of 7.8 to 8.6parts per thousand and delta(13)C values of -3.9 to -4.6parts per thousand. delta(18)O values of clinopyroxene separates from the nepheline syenites range between 4.2 and 4.9parts per thousand. The average oxygen isotopic composition of the nepheline syenitic melt was calculated based on known rock-water and mineral-water isotope fractionation to be 5.7 +/- 0.4parts per thousand. Nd and C-O isotope compositions are typical for mantle-derived rocks and do not indicate significant crustal assimilation for either syenite or carbonatite magmas. The difference in delta(18)O between calculated syenitic melts and carbonatites, and the overlap in epsilon(Nd) values between carbonatites and syenites, are consistent with derivation of the carbonatites from the syenites via liquid immiscibility.
Resumo:
Deacidification of vegetable oils can be performed using liquid-liquid extraction as an alternative method to the classical chemical and physical refining processes. This paper reports experimental data for systems containing refined babassu oil, lauric acid, ethanol, and water at 303.2 K with different water mass fractions in the alcoholic solvent (0, 0.0557, 0.1045, 0.2029, and 0.2972). The dilution of solvent with water reduced the distribution coefficient values, which indicates a reduction in the loss of neutral oil. The experimental data were used to adjust the NRTL equation parameters. The global deviation between the observed and the estimated compositions was 0.0085, indicating that the model can accurately predict the behavior of the compounds at different levels of solvent hydration. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Closed miscibility gaps in ternary liquid mixtures, at constant temperature and pressure, are obtained if phase separations occur only in the ternary region, whilst all binary mixtures involved in the system are completely miscible. This type of behaviour, although not very frequent, has been observed for a certain number of systems. Nevertheless, we have found no information about the applicability of the common activity coefficient models, as NRTL and UNIQUAC, for these types of ternary systems. Moreover, any of the island type systems published in the most common liquid–liquid equilibrium data collections, are correlated with any model. In this paper, the applicability of the NRTL equation to model the LLE of island type systems is assessed using topological concepts related to the Gibbs stability test. A first attempt to correlate experimental LLE data for two island type ternary systems is also presented.
Resumo:
In this work authors present the experimental liquid–liquid equilibria (LLE) data of water + ethanol + 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim][Tf2N]) system at different temperatures. The LLE of the system was obtained in the temperature range from 283.2 to 323.2 K. The nonrandom two liquid (NRTL) and universal quasichemical (UNIQUAC) models were used to correlate ternary systems. The equilibrium compositions were successfully correlated by the interaction parameters from both models, however UNIQUAC gave a more accurate correlation. Finally, a study about the solvent capability of ionic liquid was made in order to evaluate the possibility of separating the mixture formed by ethanol and water using that ionic liquid.
Resumo:
NPT and NVT Monte Carlo simulations are applied to models for methane and water to predict the PVT behaviour of these fluids over a wide range of temperatures and pressures. The potential models examined in this paper have previously been presented in the literature with their specific parameters optimised to fit phase coexistence data. The exponential-6 potential for methane gives generally good prediction of PVT behaviour over the full range of temperature and pressures studied with the only significant deviation from experimental data seen at high temperatures and pressures. The NSPCE water model shows very poor prediction of PVT behaviour, particularly at dense conditions. To improve this. the charge separation in the NSPCE model is varied with density. Improvements for vapour and liquid phase PVT predictions are achieved with this variation. No improvement was found in the prediction of the oxygen-oxygen radial distribution by varying charge separation under dense phase conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Liquidus temperatures and phase equilibria have been determined in the olivine primary phase field of the MgO-FeO-SiO2-Al2O3 system. Liquidus isotherms have been determined in the temperature range from 1748 to 1873K. The results are presented in the form of pseudo-ternary sections of the MgO-FeO-SiO2 with 2 and 3wt% Al2O3 in the liquid. The study enables the liquidus to be described for a range of SiO2/MgO ratios. It was found that liquidus temperatures in the olivine primary phase field decrease with the addition of Al2O3.
Resumo:
Using a model derived from lubrication theory, we consider the evolution of a thin viscous film coating the interior or exterior of a cylindrical tube. The flow is driven by surface tension and gravity and the liquid is assumed to wet the cylinder perfectly. When the tube is horizontal, we use large-time simulations to describe the bifurcation structure of the capillary equilibria appearing at low Bond number. We identify a new film configuration in which an isolated dry patch appears at the top of the tube and demonstrate hysteresis in the transition between rivulets and annular collars as the tube length is varied. For a tube tilted to the vertical, we show how a long initially uniform rivulet can break up first into isolated drops and then annular collars, which subsequently merge. We also show that the speed at which a localized drop moves down the base of a tilted tube is non-monotonic in tilt angle.
Resumo:
Cryosurgery is an efficient therapeutic technique used to treat benign and malignant cutaneous diseases. The primary active mechanism of cryosurgery is related to vascular effects on treated tissue. After a cryosurgical procedure, exuberant granulation tissue is formed at the injection site, probably as a result of angiogenic stimulation of the cryogen and inflammatory response, particularly in endothelial cells. To evaluate the angiogenic effects of freezing, as part of the phenomenon of healing rat skin subjected to previous injury. Two incisions were made in each of the twenty rats, which were divided randomly into two groups of ten. After 3 days, cryosurgery with liquid nitrogen was performed in one of incisions. The rats' samples were then collected, cut and stained to conduct histopathological examination, to assess the local angiogenesis in differing moments and situations. It was possible to demonstrate that cryosurgery, in spite of promoting cell death and accentuated local inflammation soon after its application, induces quicker cell proliferation in the affected tissue and maintenance of this rate in a second phase, than in tissue healing without this procedure. These findings, together with the knowledge that there is a direct relationship between mononuclear cells and neovascularization (the development of a rich system of new vessels in injury caused by cold), suggest that cryosurgery possesses angiogenic stimulus, even though complete healing takes longer to occur. The significance level for statistical tests was 5% (p<0,05).
Resumo:
A rapid, sensitive and specific method for quantifying propylthiouracil in human plasma using methylthiouracil as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (ethyl acetate). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS) in negative mode (ES-). Chromatography was performed using a Phenomenex Gemini C18 5μm analytical column (4.6mm×150mm i.d.) and a mobile phase consisting of methanol/water/acetonitrile (40/40/20, v/v/v)+0.1% of formic acid. For propylthiouracil and I.S., the optimized parameters of the declustering potential, collision energy and collision exit potential were -60 (V), -26 (eV) and -5 (V), respectively. The method had a chromatographic run time of 2.5min and a linear calibration curve over the range 20-5000ng/mL. The limit of quantification was 20ng/mL. The stability tests indicated no significant degradation. This HPLC-MS/MS procedure was used to assess the bioequivalence of two propylthiouracil 100mg tablet formulations in healthy volunteers of both sexes in fasted and fed state. The geometric mean and 90% confidence interval CI of Test/Reference percent ratios were, without and with food, respectively: 109.28% (103.63-115.25%) and 115.60% (109.03-122.58%) for Cmax, 103.31% (100.74-105.96%) and 103.40% (101.03-105.84) for AUClast. This method offers advantages over those previously reported, in terms of both a simple liquid-liquid extraction without clean-up procedures, as well as a faster run time (2.5min). The LOQ of 20ng/mL is well suited for pharmacokinetic studies. The assay performance results indicate that the method is precise and accurate enough for the routine determination of the propylthiouracil in human plasma. The test formulation with and without food was bioequivalent to reference formulation. Food administration increased the Tmax and decreased the bioavailability (Cmax and AUC).