986 resultados para LEUKEMIA CELLS
Resumo:
Hematopoiesis depends on a pool of quiescent hematopoietic stem/progenitor cells. When exposed to specific cytokines, a portion of these cells enters the cell cycle to generate an amplified progeny. Myeloblastin (MBN) initially was described as involved in proliferation of human leukemia cells. The granulocyte colony-stimulating factor (G-CSF), which stimulates the proliferation of granulocytic precursors, up-regulates MBN expression. Here we show that constitutive overexpression of MBN confers factor-independent growth to murine bone marrow-derived Ba/F3/G-CSFR cells. Our results point to MBN as a G-CSF responsive gene critical to factor-independent growth and indicate that expression of the G-CSF receptor is a prerequisite to this process. A 91-bp MBN promoter region containing PU.1, C/EBP, and c-Myb binding sites is responsive to G-CSF treatment. Although PU.1, C/EBP, and c-Myb transcription factors all were critical for expression of MBN, its up-regulation by G-CSF was associated mainly with PU.1. These findings suggest that MBN is an important target of PU.1 and a key protease for factor-independent growth of hematopoietic cells.
Resumo:
1-β-d-Arabinofuranosylcytosine (Ara-C) is a nucleoside analog commonly used in the treatment of leukemias. Ara-C inhibits DNA polymerases and can be incorporated into DNA. Its mechanism of cytotoxicity is not fully understood. Using oligonucleotides and purified human topoisomerase I (top1), we found a 4- to 6-fold enhancement of top1 cleavage complexes when ara-C was incorporated at the +1 position (immediately 3′) relative to a unique top1 cleavage site. This enhancement was primarily due to a reversible inhibition of top1-mediated DNA religation. Because ara-C incorporation is known to alter base stacking and sugar puckering at the misincorporation site and at the neighboring base pairs, the observed inhibition of religation at the ara-C site suggests the importance of the alignment of the 5′-hydroxyl end for religation with the phosphate group of the top1 phosphotyrosine bond. This study also demonstrates that ara-C treatment and DNA incorporation trap top1 cleavage complexes in human leukemia cells. Finally, we report that camptothecin-resistant mouse P388/CPT45 cells with no detectable top1 are crossresistant to ara-C, which suggests that top1 poisoning is a potential mechanism for ara-C cytotoxicity.
Resumo:
MLL (ALL1, Htrx, HRX), which is located on chromosome band 11q23, frequently is rearranged in patients with therapy-related acute myeloid leukemia who previously were treated with DNA topoisomerase II inhibitors. In this study, we have identified a fusion partner of MLL in a 10-year-old female who developed therapy-related acute myeloid leukemia 17 months after treatment for Hodgkin’s disease. Leukemia cells of this patient had a t(11;17)(q23;q25), which involved MLL as demonstrated by Southern blot analysis. The partner gene was cloned from cDNA of the leukemia cells by use of a combination of adapter reverse transcriptase–PCR, rapid amplification of 5′ cDNA ends, and blast database analysis to identify expressed sequence tags. The full-length cDNA of 2.8 kb was found to be an additional member of the septin family, therefore it was named MSF (MLL septin-like fusion). Members of the septin family conserve the GTP binding domain, localize in the cytoplasm, and interact with cytoskeletal filaments. A major 4-kb transcript of MSF was expressed ubiquitously; a 1.7-kb transcript was found in most tissues. An additional 3-kb transcript was found only in hematopoietic tissues. By amplification with MLL exon 5 forward primer and reverse primers in MSF, the appropriately sized products were obtained. MSF is highly homologous to hCDCrel-1, which is a partner gene of MLL in leukemias with a t(11;22)(q23;q11.2). Further analysis of MSF may help to delineate the function of MLL partner genes in leukemia, particularly in therapy-related leukemia.
Resumo:
UV irradiation induces apoptosis (or programmed cell death) in HL-60 promyelocytic leukemia cells within 3 h. UV-induced apoptosis is accompanied by activation of a 36-kDa myelin basic protein kinase (p36 MBP kinase). This kinase is also activated by okadaic acid and retinoic acid-induced apoptosis. Irrespective of the inducing agent, p36 MBP kinase activation is restricted to the subpopulation of cells actually undergoing apoptosis. Activation of p36 MBP kinase occurs in enucleated cytoplasts, indicating no requirement for a nucleus or fragmented DNA in signaling. We also demonstrate the activation of p36 kinase in tumor necrosis factor-alpha- and serum starvation-induced cell death using the human prostatic tumor cell line LNCap and NIH 3T3 fibroblasts, respectively. We postulate that p36 MBP kinase is a common component in diverse signaling pathways leading to apoptosis.
Resumo:
Whole-cell patch-clamp recordings and single-cell Ca2+ measurements were used to study the control of Ca2+ entry through the Ca2+ release-activated Ca2+ influx pathway (ICRAC) in rat basophilic leukemia cells. When intracellular inositol 1,4,5-trisphosphate (InsP3)-sensitive stores were depleted by dialyzing cells with high concentrations of InsP3, ICRAC inactivated only slightly in the absence of ATP. Inclusion of ATP accelerated inactivation 2-fold. The inactivation was increased further by the ATP analogue adenosine 5'-[gamma-thio]triphosphate, which is readily used by protein kinases, but not by 5'-adenylyl imidodiphosphate, another ATP analogue that is not used by kinases. Neither cyclic nucleotides nor inhibition of calmodulin or tyrosine kinase prevented the inactivation. Staurosporine and bisindolylmaleimide, protein kinase C inhibitors, reduced inactivation of ICRAC, whereas phorbol ester accelerated inactivation of the current. These results demonstrate that a protein kinase-mediated phosphorylation, probably through protein kinase C, inactivates ICRAC. Activation of the adenosine receptor (A3 type) in RBL cells did not evoke much Ca2+ influx or systematic activation of ICRAC. After protein kinase C was blocked, however, large ICRAC was observed in all cells and this was accompanied by large Ca2+ influx. The ability of a receptor to evoke Ca2+ entry is determined, at least in part, by protein kinase C. Antigen stimulation, which triggers secretion through a process that requires Ca2+ influx, activated ICRAC. The regulation of ICRAC by protein kinase will therefore have important consequences on cell functioning.
Resumo:
RNA interference (RNAi) has been shown to be a valuable tool to specifically target gene expression in a number of organisms becoming an indispensable weapon in the arsenal in functional genomics. In this study, we demonstrate that streptolysin-O (SLO) reversible permeabilisation is an efficient method to deliver small interfering RNAs (siRNAs) to hard-to-transfect human myeloma cell lines. We used published, pre-validated siRNAs for ERK2 and non-silencing siRNA control. We transfected siRNAs into human myeloma cell lines using SLO reversible permeabilisation method. Flow cytometry and western blot analysis were performed to assess the effect of SLO on transfection efficiency and ERK2 knockdown. These experiments demonstrate that SLO reversible permeabilisation method is an efficient and easy-to-use method to deliver siRNAs into human myeloma cell lines. Optimised SLO permeabilisation method showed to transfect >80% of JIM-3, H929, RPM18226 and U266 cells, with minimal effect on cell viability (<10%) and cell cycle. Equally important, SLO permeabilisation induced a substantial knockdown of ERK2 at the protein level. These studies demonstrate that reversible SLO permeabilisation can successfully be applied to hard-to-transfect human myeloma cell lines to effectively silence genes. (C) 2008 Published by Elsevier B.V.
Resumo:
Riboflavin (vitamin B2) is a precursor for coenzymes involved in energy production, biosynthesis, detoxification, and electron scavenging. Previously, we demonstrated that irradiated riboflavin (IR) has potential antitumoral effects against human leukemia cells (HL60), human prostate cancer cells (PC3), and mouse melanoma cells (B16F10) through a common mechanism that leads to apoptosis. Hence, we here investigated the effect of IR on 786-O cells, a known model cell line for clear cell renal cell carcinoma (CCRCC), which is characterized by high-risk metastasis and chemotherapy resistance. IR also induced cell death in 786-O cells by apoptosis, which was not prevented by antioxidant agents. IR treatment was characterized by downregulation of Fas ligand (TNF superfamily, member 6)/Fas (TNF receptor superfamily member 6) (FasL/Fas) and tumor necrosis factor receptor superfamily, member 1a (TNFR1)/TNFRSF1A-associated via death domain (TRADD)/TNF receptor-associated factor 2 (TRAF) signaling pathways (the extrinsic apoptosis pathway), while the intrinsic apoptotic pathway was upregulated, as observed by an elevated Bcl-2 associated x protein/B-cell CLL/lymphoma 2 (Bax/Bcl-2) ratio, reduced cellular inhibitor of apoptosis 1 (c-IAP1) expression, and increased expression of apoptosis-inducing factor (AIF). The observed cell death was caspase-dependent as proven by caspase 3 activation and poly(ADP-ribose) polymerase-1 (PARP) cleavage. IR-induced cell death was also associated with downregulation of v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homologue (avian)/protein serine/threonine kinase B/extracellular signal-regulated protein kinase 1/2 (Src/AKT/ERK1/2) pathway and activation of p38 MAP kinase (p38) and Jun-amino-terminal kinase (JNK). Interestingly, IR treatment leads to inhibition of matrix metalloproteinase-2 (MMP-2) activity and reduced expression of renal cancer aggressiveness markers caveolin-1, low molecular weight phosphotyrosine protein phosphatase (LMWPTP), and kinase insert domain receptor (a type III receptor tyrosine kinase) (VEGFR-2). Together, these results show the potential of IR for treating cancer.
Resumo:
Background: Mast cells have recently gained new importance as immunoregulatory cells that are involved in numerous pathological processes. One result of these processes is an increase in mast cell numbers at peripheral sites. This study was undertaken to determine the mast cell response in the peritoneal cavity and bone marrow during repopulation of the peritoneal cavity in rats. Results: Two mast cell specific antibodies, mAb AA4 and mAb BGD6, were used to distinguish the committed mast cell precursor from more mature mast cells. The peritoneal cavity was depleted of mast cells using distilled water. Twelve hours after distilled water injection, very immature mast cells could be isolated from the blood and by 48 hours were present in the peritoneal cavity. At this same time the percentage of mast cells in mitosis increased fourfold. Mast cell depletion of the peritoneal cavity also reduced the total number of mast cells in the bone marrow, but increased the number of mast cell committed precursors. Conclusions: In response to mast cell depletion of the peritoneal cavity, a mast cell progenitor is released into the circulation and participates in repopulation of the peritoneal cavity, while the committed mast cell precursor is retained in the bone marrow.
Resumo:
This study consists of the bioassay-guided fractionation of the dichloromethane extract from Eudistoma vannamei and the pharmacological characterization of the active fractions. The dried hydromethanolic extract dissolved in aqueous methanol was partitioned with dichloromethane and chromatographed on a silica gel flash column. The anti-proliferative effect was monitored by the MTT assay. Four of the latest fractions, numbered 14 to 17, which held many chemical similarities amongst each other, were found to be the most active. The selected fractions were tested for viability, proliferation and death induction on cultures of HL-60 promycloblastic leukemia cells. The results suggested that the observed cytotoxicity is related to apoptosis induction. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Matrix metalloproteinases (MMPs) are promising diagnostic tools, and blood sampling/handling alters MMP concentrations between plasma and serum and between serum with and without clot activators. To explain the higher MMP-9 expression in serum collected with clot accelerators relative to serum with no additives and to plasma, we analyzed the effects of increasing amounts of silica and silicates (components of clot activators) in,citrate plasma, serum, and huffy coats collected in both plastic and glass tubes from 50 healthy donors, and we analyzed the effects of silica and silicate on cultured leukemia cells. The levels of MMP-2 did not show significant changes between glass and plastic tubes, between serum and plasma, between serum with and without clot accelerators, or between silica and silicate treatments. No modification of MMP-9 expression was obtained by the addition of silica or silicate to previously separated plasma and serum. Increasing the amounts of nonsoluble silica and soluble silicate added to citrate and empty tubes prior to blood collection resulted in increasing levels of MMP-9 relative to citrate plasma and serum. Silica and silicate added to buffy coats and leukemia cells significantly induced MMP-9 release/secretion, demonstrating that both silica and silicate induce the release of pro- and complexed MMP-9 forms. We recommend limiting the misuse of serum and avoiding the interfering effects of clot activators. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The spectrum of protein tyrosine phosphatases (PTPs) expressed in bone marrow-derived murine macrophages (BMMs) was examined using reverse transcriptase-polymerase chain reaction. Ten different PTP cDNAs were isolated and in this study we focus on mDEP-1, a type III receptor PTP. Three mDEP-1 transcripts were expressed in primary macrophages and macrophage cell lines and were induced during macrophage differentiation of M1 myeloid leukemia cells. A valiant mRNA Tvas identified that encodes an alternate carboxyl-terminus and 3' UTR. The expression of mDEP-1 was down-regulated by CSF-1 (macrophage colony-stimulating factor) and up-regulated by bacterial lipopolysaccharide, an important physiological regulator of macrophage function that opposes CSF-1 action. Whole mount irt situ hybridization, and immunolocalization of the protein, confirmed that mDEP-1 is expressed by a subset of embryonic macrophages in the liver and mesenchyme. mDEP-1 was also detected in the eye and peripheral nervous system of the developing embryo. Attempts to express mDEP-1 constitutively in the macrophage cell line RAW264 were unsuccessful, with results suggesting that the gene product inhibits cell proliferation.
Resumo:
The potent, conformationally biased C5a agonist peptide YSFKPMPLaR (C5a(65-74), Y65, F67, P69, P71, D-Ala73) was used as a template to gain insight into the nature and importance of lysine at position 68 in the peptide-receptor interaction. A panel of YSFKPMPLaR analogs with systematic substitutions for Lys68 was evaluated for C5a receptor (C5aR) binding affinity and activation in two well-characterized assay systems: human polymorphonuclear leukocytes (PMNs) and human fetal artery. In addition, we determined the activity of these new analogs in transfected rat basophilic leukemia (RBL) cells in which the Glu at position 199 of the C5aR (wtGlu199) was replaced by a Gin (C5aR-Gln199) or a Lys (C5aR-Lys199). Our results indicated that Lys68 in YSFKPMPLaR plays an important role in binding the C5aR expressed on PMNs and RBL cells. Furthermore, the data indicated that Lys68 interacted with Glu199 of the C5aR in PMNs and RBL cells. In human fetal artery, however, Lys68 substitutions had little or no effect on activity, which suggested that the receptor conformation may be different in this tissue. Thus, the interaction between Lys68 of the decapeptide agonist and Glu199 of the C5aR may be cell type-specific and may form the molecular basis for tissue-specific responses to C5a agonists.
Resumo:
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as Fc epsilon RI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased Fc epsilon RI-induced degranulation, nuclear factor for T cell activation and NF kappa B activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.
Resumo:
The biodistribution of the 202 monoclonal antibody against CEA labeled with 88Y by the bicyclic DTPA anhydride method was studied in normal Balb/c mice. The in vitro binding to 1 X 10(7) CO112, LS174T and WiDR colon cancer cells was 21.0, 27.3 and 18.8%, respectively. The binding to an equal number of KM-3 leukemia cells and normal human lymphocytes was 8.9 and 3.2%, respectively. Liver, spleen, kidney and blood were the tissues that showed the highest uptake of radiolabeled antibody in vivo.
Resumo:
Cells are constantly responding to signals from the surrounding tissues and the environment. To dispose of infected and potentially dangerous cells, to ensure the optimal execution of developmental processes and to maintain tissue homeostasis, a multicellular organism needs to tightly control both the number and the quality of its cells. Apoptosis is a form of active cellular self-destruction that enables an organism to regulate its cell number by deleting damaged or potentially dangerous cells. Apoptosis can be induced by death ligands, which bind to death receptors on the cell surface. Ligation of the receptors leads to the formation of an intracellular death inducing signaling complex (DISC). One of the DISC components is caspase-8, a protease that triggers the caspase cascade and is thereby a key initiator of programmed cell death. The activation of caspase-8 is controlled by the cellular FLICE-inhibitory proteins (c-FLIPs). Consequently, sensitivity towards receptor-mediated apoptosis is determined by the amount of c-FLIP, and the c-FLIP levels are actively regulated for example during erythroid differentiation of K562 erythroleukemia cells and by hyperthermia in Jurkat leukemia cells. The aim of my thesis was to investigate how c-FLIP is regulated during these processes. We found that c-FLIP isoforms are short-lived proteins, although c-FLIPS had an even shorter half-life than c-FLIPL. In both experimental models, increased death receptor sensitivity correlated with induced ubiquitylation and consequent proteasomal degradation of c-FLIP. Furthermore, we elucidated how phosphorylation regulates the biological functions and the turnover of c-FLIP, thereby contributing to death receptor sensitivity. We mapped the first phosphorylation sites on c-FLIP and dissected how their phosphorylation affects c-FLIP. Moreover, we demonstrated that phosphorylation of serine 193, a phosphorylated residue common to all c-FLIPs, is primarily mediated by the classical PKC. Furthermore, we discovered a novel connection between the phosphorylation and ubiquitylation of c-FLIP: phosphorylation of S193 protects c-FLIP from ubiquitylation. Surprisingly, although all c-FLIP isoforms are phosphorylated on this conserved residue, the biological outcome is different for the long and short isoforms, since S193 specifically prolongs the half-lives of the short c-FLIP isoforms, but not c-FLIPL. To summarize, we show that c-FLIP proteins are modified by ubiquitylation and phosphorylation, and that the biological outcomes of these modifications are isoform-specifically determined.