901 resultados para LARGE-AREA
Resumo:
In this paper, we present a study on electrical and optical characteristics of n-type tin-oxide nanowires integrated based on top-down scale-up strategy. Through a combination of contact printing and plasma based back-channel passivation, we have achieved stable electrical characteristics with standard deviation in mobility and threshold voltage of 9.1% and 25%, respectively, for a large area of 1× 1 cm2 area. Through use of contact printing, high alignment of nanowires was achieved thus minimizing the number of nanowire-nanowire junctions, which serve to limit carrier transport in the channel. In addition, persistent photoconductivity has been observed, which we attribute to oxygen vacancy ionization and subsequent elimination using a gate pulse driving scheme. © 2014 IEEE.
Resumo:
Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.
Resumo:
Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.
Resumo:
An effective and facile method for fabrication of large area of aggregated gold nanorods (AuNRs) film was proposed by self-assembly of AuNRs at a toluene/water interface for the first time. It was found that large area of aggregated AuNRs film could be formed at the interface of toluene and water due to the interfacial tension between the two phases. The obtained large area of aggregated AuNRs film exhibits strong surface-enhanced Raman scattering (SERS) activity with 4-aminothiophenol (4-ATP) and 2-aminothiophenol (2-ATP) as the probe molecules based on the strong electromagnetic coupling effect between the very adjacent AuNRs.
Resumo:
A new and facile method to prepare large-area silver-coated silicon nanowire arrays for surface-enhanced Raman spectroscopy (SERS)-based sensing is introduced. High-quality silicon nanowire arrays are prepared by a chemical etching method and used as a template for the generation of SERS-active silver-coated silicon nanowire arrays. The morphologies of the silicon nanowire arrays and the type of silver-plating solution are two key factors determining the magnitude of SERS signal enhancement and the sensitivity of detection; they are investigated in detail for the purpose of optimization.
Resumo:
This thesis explores a new method to fabricate SERS detection platforms formed by large area self-assembled Au nanorod arrays. For the fabrication of these new SERS platforms a new droplet deposition method for the self-assembly of Au nanorods was developed. The method, based in the controlled evaporation of organic suspensions of Au nanorods, was used for the fabrication of horizontal and vertical arrays of Au nanorods over large areas (100μm2). The fabricated nanorods arrays showed a high degree of order measured by SEM and optical microscopy over mm2 areas, but unfortunately they detached from the support when immersed in any analyte solutions. In order to improve adhesion of arrays to the support and clean off residual organic matter, we introduced an additional stamping process. The stamping process allows the immobilization of the arrays on different flexible and rigid substrates, whose feasibility as SERS platforms were tested satisfactory with the model molecule 4ABT. Following the feasibility study, the substrates were used for the detection of the food contaminant Crystal Violet and the drug analogue Benzocaine as examples of recognition of health menaces in real field applications.
Resumo:
We demonstrate that interferometric lithography provides a fast, simple approach to the production of patterns in self-assembled monolayers (SAMs) with high resolution over square centimeter areas. As a proof of principle, two-beam interference patterns, formed using light from a frequency-doubled argon ion laser (244 nm), were used to pattern methyl-terminated SAMs on gold, facilitating the introduction of hydroxyl-terminated adsorbates and yielding patterns of surface free energy with a pitch of ca. 200 nm. The photopatterning of SAMs on Pd has been demonstrated for the first time, with interferometric exposure yielding patterns of surface free energy with similar features sizes to those obtained on gold. Gold nanostructures were formed by exposing SAMs to UV interference patterns and then immersing the samples in an ethanolic solution of mercaptoethylamine, which etched the metal substrate in exposed areas while unoxidized thiols acted as a resist and protected the metal from dissolution. Macroscopically extended gold nanowires were fabricated using single exposures and arrays of 66 nm gold dots at 180 nm centers were formed using orthogonal exposures in a fast, simple process. Exposure of oligo(ethylene glycol)-terminated SAMs to UV light caused photodegradation of the protein-resistant tail groups in a substrate-independent process. In contrast to many protein patterning methods, which utilize multiple steps to control surface binding, this single step process introduced aldehyde functional groups to the SAM surface at exposures as low as 0.3 J cm(-2), significantly less than the exposure required for oxidation of the thiol headgroup. Although interferometric methods rely upon a continuous gradient of exposure, it was possible to fabricate well-defined protein nanostructures by the introduction of aldehyde groups and removal of protein resistance in nanoscopic regions. Macroscopically extended, nanostructured assemblies of streptavidin were formed. Retention of functionality in the patterned materials was demonstrated by binding of biotinylated proteins.
Resumo:
In this paper, we report the results of investigations on the potential of spray pyrolysis technique in depositing electron selective layer over larger area for the fabrication of inverted bulk-heterojunction polymer solar cells. The electron selective layer (In2S3) was deposited using spray pyrolysis technique and the linear heterojunction device thus fabricated exhibited good uniformity in photovoltaic properties throughout the area of the device. An MEH-PPV:PCBM inverted bulk-heterojunction device with In2S3 electron selective layer (active area of 3.25 3.25 cm2) was also fabricated and tested under indoor and outdoor conditions. Fromthe indoor measurements employing a tungsten halogen lamp (50mW/cm2 illumination), an opencircuit voltage of 0.41V and a short-circuit current of 5.6mA were obtained. On the other hand, the outdoor measurements under direct sunlight (74mW/cm2) yielded an open-circuit voltage of 0.46V and a short-circuit current of 9.37mA
Resumo:
Micromirror arrays are a very strong candidate for future energy saving applications. Within this work, the fabrication process for these micromirror arrays has been optimized and some steps for the large area fabrication of micromirror modules were performed. At first the surface roughness of the insulation layer of silicon dioxide (SiO2) was investigated. This SiO2 thin layer was deposited on three different type of substrates i.e. silicon, glass and Polyethylene Naphthalate (PEN) substrates. The deposition techniques which has been used are Plasma Enhanced Chemical Vapor Deposition (PECVD), Physical Vapor Deposition (PVD) and Ion Beam Sputter Deposition (IBSD). The thickness of the SiO2 thin layer was kept constant at 150nm for each deposition process. The surface roughness was measured by Stylus Profilometry and Atomic Force Microscopy (AFM). It was found that the layer which was deposited by IBSD has got the minimum surface roughness value and the layer which was deposited by PECVD process has the highest surface roughness value. During the same investigation, the substrate temperature of PECVD was varied from 80° C to 300° C with the step size of 40° C and it was found that the surface roughness keeps on increasing as the substrate holder temperature increases in the PECVD process. A new insulation layer system was proposed to minimize the dielectric breakdown effect in insulation layer for micromirror arrays. The conventional bilayer system was replaced by five layer system but the total thickness of insulation layer remains the same. It was found that during the actuation of micromirror arrays structure, the dielectric breakdown effect was reduced considerably as compared to the bilayer system. In the second step the fabrication process of the micromirror arrays was successfully adapted and transferred from glass substrates to the flexible PEN substrates by optimizing the conventional process recipe. In the last section, a large module of micromirror arrays was fabricated by electrically interconnecting four 10cm×10cm micromirror modules on a glass pane having dimensions of 21cm×21cm.
Resumo:
Seafloor imagery is a rich source of data for the study of biological and geological processes. Among several applications, still images of the ocean floor can be used to build image composites referred to as photo-mosaics. Photo-mosaics provide a wide-area visual representation of the benthos, and enable applications as diverse as geological surveys, mapping and detection of temporal changes in the morphology of biodiversity. We present an approach for creating globally aligned photo-mosaics using 3D position estimates provided by navigation sensors available in deep water surveys. Without image registration, such navigation data does not provide enough accuracy to produce useful composite images. Results from a challenging data set of the Lucky Strike vent field at the Mid Atlantic Ridge are reported
Resumo:
The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.