368 resultados para Kriging
Resumo:
Condensation technique of degree of freedom is firstly proposed to improve the computational efficiency of meshfree method with Galerkin weak form. In present method, scattered nodes without connectivity are divided into several subsets by cells with arbitrary shape. The local discrete equations are established over each cell by using moving kriging interpolation, in which the nodes that located in the cell are used for approximation. Then, the condensation technique can be introduced into the local discrete equations by transferring equations of inner nodes to equations of boundary nodes based on cell. In the scheme of present method, the calculation of each cell is carried out by meshfree method with Galerkin weak form, and local search is implemented in interpolation. Numerical examples show that the present method has high computational efficiency and convergence, and good accuracy is also obtained.
Resumo:
OBJECTIVES To identify the meteorological drivers of dengue vector density and determine high- and low-risk transmission zones for dengue prevention and control in Cairns, Australia. METHODS Weekly adult female Ae. aegypti data were obtained from 79 double sticky ovitraps (SOs) located in Cairns for the period September 2007-May 2012. Maximum temperature, total rainfall and average relative humidity data were obtained from the Australian Bureau of Meteorology for the study period. Time series-distributed lag nonlinear models were used to assess the relationship between meteorological variables and vector density. Spatial autocorrelation was assessed via semivariography, and ordinary kriging was undertaken to predict vector density in Cairns. RESULTS Ae. aegypti density was associated with temperature and rainfall. However, these relationships differed between short (0-6 weeks) and long (0-30 weeks) lag periods. Semivariograms showed that vector distributions were spatially autocorrelated in September 2007-May 2008 and January 2009-May 2009, and vector density maps identified high transmission zones in the most populated parts of Cairns city, as well as Machans Beach. CONCLUSION Spatiotemporal patterns of Ae. aegypti in Cairns are complex, showing spatial autocorrelation and associations with temperature and rainfall. Sticky ovitraps should be placed no more than 1.2 km apart to ensure entomological coverage and efficient use of resources. Vector density maps provide evidence for the targeting of prevention and control activities. Further research is needed to explore the possibility of developing an early warning system of dengue based on meteorological and environmental factors.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
A sub‒domain smoothed Galerkin method is proposed to integrate the advantages of mesh‒free Galerkin method and FEM. Arbitrarily shaped sub‒domains are predefined in problems domain with mesh‒free nodes. In each sub‒domain, based on mesh‒free Galerkin weak formulation, the local discrete equation can be obtained by using the moving Kriging interpolation, which is similar to the discretization of the high‒order finite elements. Strain smoothing technique is subsequently applied to the nodal integration of sub‒domain by dividing the sub‒domain into several smoothing cells. Moreover, condensation of DOF can also be introduced into the local discrete equations to improve the computational efficiency. The global governing equations of present method are obtained on the basis of the scheme of FEM by assembling all local discrete equations of the sub‒domains. The mesh‒free properties of Galerkin method are retained in each sub‒domain. Several 2D elastic problems have been solved on the basis of this newly proposed method to validate its computational performance. These numerical examples proved that the newly proposed sub‒domain smoothed Galerkin method is a robust technique to solve solid mechanics problems based on its characteristics of high computational efficiency, good accuracy, and convergence.
Resumo:
Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dynamic analysis. In the present method, scattered nodes without connectivity are divided into several subsets by cells with arbitrary shape. Local discrete equation is established over each cell by using moving Kriging interpolation, in which the nodes that located in the cell are used for approximation. Then local discrete equations can be simplified by condensation of degree of freedom, which transfers equations of inner nodes to equations of boundary nodes based on cells. The global dynamic system equations are obtained by assembling all local discrete equations and are solved by using the standard implicit Newmark’s time integration scheme. In the scheme of present method, the calculation of each cell is carried out by meshfree method, and local search is implemented in interpolation. Numerical examples show that the present method has high computational efficiency and good accuracy in solving elastic dynamic problems.
Resumo:
Entomological surveillance and control are essential to the management of dengue fever (DF). Hence, understanding the spatial and temporal patterns of DF vectors, Aedes (Stegomyia) aegypti (L.) and Ae. (Stegomyia) albopictus (Skuse), is paramount. In the Philippines, resources are limited and entomological surveillance and control are generally commenced during epidemics, when transmission is difficult to control. Recent improvements in spatial epidemiological tools and methods offer opportunities to explore more efficient DF surveillance and control solutions: however, there are few examples in the literature from resource-poor settings. The objectives of this study were to: (i) explore spatial patterns of Aedes populations and (ii) predict areas of high and low vector density to inform DF control in San Jose village, Muntinlupa city, Philippines. Fortnightly, adult female Aedes mosquitoes were collected from 50 double-sticky ovitraps (SOs) located in San Jose village for the period June-November 2011. Spatial clustering analysis was performed to identify high and low density clusters of Ae. aegypti and Ae. albopictus mosquitoes. Spatial autocorrelation was assessed by examination of semivariograms, and ordinary kriging was undertaken to create a smoothed surface of predicted vector density in the study area. Our results show that both Ae. aegypti and Ae. albopictus were present in San Jose village during the study period. However, one Aedes species was dominant in a given geographic area at a time, suggesting differing habitat preferences and interspecies competition between vectors. Density maps provide information to direct entomological control activities and advocate the development of geographically enhanced surveillance and control systems to improve DF management in the Philippines.
Resumo:
This article develops methods for spatially predicting daily change of dissolved oxygen (Dochange) at both sampled locations (134 freshwater sites in 2002 and 2003) and other locations of interest throughout a river network in South East Queensland, Australia. In order to deal with the relative sparseness of the monitoring locations in comparison to the number of locations where one might want to make predictions, we make a classification of the river and stream locations. We then implement optimal spatial prediction (ordinary and constrained kriging) from geostatistics. Because of their directed-tree structure, rivers and streams offer special challenges. A complete approach to spatial prediction on a river network is given, with special attention paid to environmental exceedances. The methodology is used to produce a map of Dochange predictions for 2003. Dochange is one of the variables measured as part of the Ecosystem Health Monitoring Program conducted within the Moreton Bay Waterways and Catchments Partnership.
Resumo:
In large sedimentary basins with layers of different rocks, the groundwater flow between aquifers depends on the hydraulic conductivity (K) of the separating low-permeable rocks, or aquitards. Three methods were developed to evaluate K in aquitards for areas with limited field data: • Coherence and harmonic analysis: estimates the regional-scale K based on water-level fluctuations in adjacent aquifers. • Cokriging and Bayes' rule: infers K from downhole geophysical logs. • Fluvial process model: reproduces the lithology architecture of sediment formations which can be converted to K. These proposed methods enable good estimates of K and better planning of further drillholes.
Resumo:
Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function (CPDF) is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.
Resumo:
The most important aspect of modelling a geological variable, such as metal grade, is the spatial correlation. Spatial correlation describes the relationship between realisations of a geological variable sampled at different locations. Any method for spatially modelling such a variable should be capable of accurately estimating the true spatial correlation. Conventional kriged models are the most commonly used in mining for estimating grade or other variables at unsampled locations, and these models use the variogram or covariance function to model the spatial correlations in the process of estimation. However, this usage assumes the relationships of the observations of the variable of interest at nearby locations are only influenced by the vector distance between the locations. This means that these models assume linear spatial correlation of grade. In reality, the relationship with an observation of grade at a nearby location may be influenced by both distance between the locations and the value of the observations (ie non-linear spatial correlation, such as may exist for variables of interest in geometallurgy). Hence this may lead to inaccurate estimation of the ore reserve if a kriged model is used for estimating grade of unsampled locations when nonlinear spatial correlation is present. Copula-based methods, which are widely used in financial and actuarial modelling to quantify the non-linear dependence structures, may offer a solution. This method was introduced by Bárdossy and Li (2008) to geostatistical modelling to quantify the non-linear spatial dependence structure in a groundwater quality measurement network. Their copula-based spatial modelling is applied in this research paper to estimate the grade of 3D blocks. Furthermore, real-world mining data is used to validate this model. These copula-based grade estimates are compared with the results of conventional ordinary and lognormal kriging to present the reliability of this method.
Resumo:
The structure and function of northern ecosystems are strongly influenced by climate change and variability and by human-induced disturbances. The projected global change is likely to have a pronounced effect on the distribution and productivity of different species, generating large changes in the equilibrium at the tree-line. In turn, movement of the tree-line and the redistribution of species produce feedback to both the local and the regional climate. This research was initiated with the objective of examining the influence of natural conditions on the small-scale spatial variation of climate in Finnish Lapland, and to study the interaction and feedback mechanisms in the climate-disturbances-vegetation system near the climatological border of boreal forest. The high (1 km) resolution spatial variation of climate parameters over northern Finland was determined by applying the Kriging interpolation method that takes into account the effect of external forcing variables, i.e., geographical coordinates, elevation, sea and lake coverage. Of all the natural factors shaping the climate, the geographical position, local topography and altitude proved to be the determining ones. Spatial analyses of temperature- and precipitation-derived parameters based on a 30-year dataset (1971-2000) provide a detailed description of the local climate. Maps of the mean, maximum and minimum temperatures, the frost-free period and the growing season indicate that the most favourable thermal conditions exist in the south-western part of Lapland, around large water bodies and in the Kemijoki basin, while the coldest regions are in highland and fell Lapland. The distribution of precipitation is predominantly longitudinally dependent but with the definite influence of local features. The impact of human-induced disturbances, i.e., forest fires, on local climate and its implication for forest recovery near the northern timberline was evaluated in the Tuntsa area of eastern Lapland, damaged by a widespread forest fire in 1960 and suffering repeatedly-failed vegetation recovery since that. Direct measurements of the local climate and simulated heat and water fluxes indicated the development of a more severe climate and physical conditions on the fire-disturbed site. Removal of the original, predominantly Norway spruce and downy birch vegetation and its substitution by tundra vegetation has generated increased wind velocity and reduced snow accumulation, associated with a large variation in soil temperature and moisture and deep soil frost. The changed structural parameters of the canopy have determined changes in energy fluxes by reducing the latter over the tundra vegetation. The altered surface and soil conditions, as well as the evolved severe local climate, have negatively affected seedling growth and survival, leading to more unfavourable conditions for the reproduction of boreal vegetation and thereby causing deviations in the regional position of the timberline. However it should be noted that other factors, such as an inadequate seed source or seedbed, the poor quality of the soil and the intensive logging of damaged trees could also exacerbate the poor tree regeneration. In spite of the failed forest recovery at Tunsta, the position and composition of the timberline and tree-line in Finnish Lapland may also benefit from present and future changes in climate. The already-observed and the projected increase in temperature, the prolonged growing season, as well as changes in the precipitation regime foster tree growth and new regeneration, resulting in an advance of the timberline and tree-line northward and upward. This shift in the distribution of vegetation might be decelerated or even halted by local topoclimatic conditions and by the expected increase in the frequency of disturbances.
Resumo:
A spatial sampling design that uses pair-copulas is presented that aims to reduce prediction uncertainty by selecting additional sampling locations based on both the spatial configuration of existing locations and the values of the observations at those locations. The novelty of the approach arises in the use of pair-copulas to estimate uncertainty at unsampled locations. Spatial pair-copulas are able to more accurately capture spatial dependence compared to other types of spatial copula models. Additionally, unlike traditional kriging variance, uncertainty estimates from the pair-copula account for influence from measurement values and not just the configuration of observations. This feature is beneficial, for example, for more accurate identification of soil contamination zones where high contamination measurements are located near measurements of varying contamination. The proposed design methodology is applied to a soil contamination example from the Swiss Jura region. A partial redesign of the original sampling configuration demonstrates the potential of the proposed methodology.
Resumo:
The aim of this study was to evaluate and test methods which could improve local estimates of a general model fitted to a large area. In the first three studies, the intention was to divide the study area into sub-areas that were as homogeneous as possible according to the residuals of the general model, and in the fourth study, the localization was based on the local neighbourhood. According to spatial autocorrelation (SA), points closer together in space are more likely to be similar than those that are farther apart. Local indicators of SA (LISAs) test the similarity of data clusters. A LISA was calculated for every observation in the dataset, and together with the spatial position and residual of the global model, the data were segmented using two different methods: classification and regression trees (CART) and the multiresolution segmentation algorithm (MS) of the eCognition software. The general model was then re-fitted (localized) to the formed sub-areas. In kriging, the SA is modelled with a variogram, and the spatial correlation is a function of the distance (and direction) between the observation and the point of calculation. A general trend is corrected with the residual information of the neighbourhood, whose size is controlled by the number of the nearest neighbours. Nearness is measured as Euclidian distance. With all methods, the root mean square errors (RMSEs) were lower, but with the methods that segmented the study area, the deviance in single localized RMSEs was wide. Therefore, an element capable of controlling the division or localization should be included in the segmentation-localization process. Kriging, on the other hand, provided stable estimates when the number of neighbours was sufficient (over 30), thus offering the best potential for further studies. Even CART could be combined with kriging or non-parametric methods, such as most similar neighbours (MSN).
Resumo:
The urban heat island phenomenon is the most well-known all-year-round urban climate phenomenon. It occurs in summer during the daytime due to the short-wave radiation from the sun and in wintertime, through anthropogenic heat production. In summertime, the properties of the fabric of city buildings determine how much energy is stored, conducted and transmitted through the material. During night-time, when there is no incoming short-wave radiation, all fabrics of the city release the energy in form of heat back to the urban atmosphere. In wintertime anthropogenic heating of buildings and traffic deliver energy into the urban atmosphere. The initial focus of Helsinki urban heat island was on the description of the intensity of the urban heat island (Fogelberg 1973, Alestalo 1975). In this project our goal was to carry out as many measurements as possible over a large area of Helsinki to give a long term estimate of the Helsinki urban heat island. Helsinki is a city with 550 000 inhabitants and located on the north shore of Finnish Bay of the Baltic Sea. Initially, comparison studies against long-term weather station records showed that our regular, but weekly, sampling of observations adequately describe the Helsinki urban heat island. The project covered an entire seasonal cycle over the 12 months from July 2009 to June 2010. The measurements were conducted using a moving platform following microclimatological traditions. Tuesday was selected as the measuring day because it was the only weekday during the one year time span without any public holidays. Once a week, two set of measurements, in total 104, were conducted in the heterogeneous temperature conditions of Helsinki city centre. In the more homogeneous suburban areas, one set of measurements was taken every second week, to give a total of 52.The first set of measurements took place before noon, and the second 12 hours, just prior to midnight. Helsinki Kaisaniemi weather station was chosen as the reference station. This weather station is located in a large park in the city centre of Helsinki. Along the measurement route, 336 fixed points were established, and the monthly air temperature differences to Kaisaniemi were calculated to produce monthly and annual maps. The monthly air temperature differences were interpolated 21.1 km by 18.1 km horizontal grid with 100 metre resolution residual kriging method. The following independent variables for the kriging interpolation method were used: topographical height, portion of sea area, portion of trees, fraction of built-up and not built-up area, volumes of buildings, and population density. The annual mean air temperature difference gives the best representation of the Helsinki urban heat island effect- Due to natural variability of weather conditions during the measurement campaign care must be taken when interpretation the results for the monthly values. The main results of this urban heat island research project are: a) The city centre of Helsinki is warmer than its surroundings, both on a monthly main basis, and for the annual mean, however, there are only a few grid points, 46 out of 38 191, which display a temperature difference of more than 1K. b) If the monthly spatial variation is air temperature differences is small, then usually the temperature difference between the city and the surroundings is also small. c) Isolated large buildings and suburban centres create their own individual heat island. d) The topographical influence on air temperature can generally be neglected for the monthly mean, but can be strong under certain weather conditions.
Resumo:
用地质统计学中有代表性的普通Kriging法和对数正态Kriging法对某油田P油层的渗透率、孔隙度和有效厚度等特征参数进行了分析。通过比较两种计算方法的特征参数结果,发现这两种地质统计学方法在描述油藏多孔介质的非均质性方面各有各的适用范围。普通Kriging法更适合于特征参数呈正态分布关系的情况,对数正态Kriging法更适合于特征参数呈非正态分布关系的情况。这为非均质油藏的油藏描述方法提供了合理的判据,为非均质多孔介质中流体流动规律的研究提供了有力基础。