913 resultados para Knowledge Discovery Tools


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Point placement strategies aim at mapping data points represented in higher dimensions to bi-dimensional spaces and are frequently used to visualize relationships amongst data instances. They have been valuable tools for analysis and exploration of data sets of various kinds. Many conventional techniques, however, do not behave well when the number of dimensions is high, such as in the case of documents collections. Later approaches handle that shortcoming, but may cause too much clutter to allow flexible exploration to take place. In this work we present a novel hierarchical point placement technique that is capable of dealing with these problems. While good grouping and separation of data with high similarity is maintained without increasing computation cost, its hierarchical structure lends itself both to exploration in various levels of detail and to handling data in subsets, improving analysis capability and also allowing manipulation of larger data sets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interactive visual representations complement traditional statistical and machine learning techniques for data analysis, allowing users to play a more active role in a knowledge discovery process and making the whole process more understandable. Though visual representations are applicable to several stages of the knowledge discovery process, a common use of visualization is in the initial stages to explore and organize a sometimes unknown and complex data set. In this context, the integrated and coordinated - that is, user actions should be capable of affecting multiple visualizations when desired - use of multiple graphical representations allows data to be observed from several perspectives and offers richer information than isolated representations. In this paper we propose an underlying model for an extensible and adaptable environment that allows independently developed visualization components to be gradually integrated into a user configured knowledge discovery application. Because a major requirement when using multiple visual techniques is the ability to link amongst them, so that user actions executed on a representation propagate to others if desired, the model also allows runtime configuration of coordinated user actions over different visual representations. We illustrate how this environment is being used to assist data exploration and organization in a climate classification problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O atual modelo do setor elétrico brasileiro permite igualdade de condições a todos os agentes e reduz o papel do Estado no setor. Esse modelo obriga as empresas do setor a melhorarem cada vez mais a qualidade de seu produto e, como requisito para este objetivo, devem fazer uso mais efetivo da enorme quantidade de dados operacionais que são armazenados em bancos de dados, provenientes da operação dos seus sistemas elétricos e que tem nas Usinas Hidrelétricas (UHE) a sua principal fonte de geração de energia. Uma das principais ferramentas para gerenciamento dessas usinas são os sistemas de Supervisão, Controle e Aquisição de Dados (Supervisory Control And Data Acquisition - SCADA). Assim, a imensa quantidade de dados acumulados nos bancos de dados pelos sistemas SCADA, muito provavelmente contendo informações relevantes, deve ser tratada para descobrir relações e padrões e assim ajudar na compreensão de muitos aspectos operacionais importantes e avaliar o desempenho dos sistemas elétricos de potência. O processo de Descoberta de Conhecimento em Banco de Dados (Knowledge Discovery in Database - KDD) é o processo de identificar, em grandes conjuntos de dados, padrões que sejam válidos, novos, úteis e compreensíveis, para melhorar o entendimento de um problema ou um procedimento de tomada de decisão. A Mineração de Dados (ou Data Mining) é o passo dentro do KDD que permite extrair informações úteis em grandes bases de dados. Neste cenário, o presente trabalho se propõe a realizar experimentos de mineração de dados nos dados gerados por sistemas SCADA em UHE, a fim de produzir informações relevantes para auxiliar no planejamento, operação, manutenção e segurança das hidrelétricas e na implantação da cultura da mineração de dados aplicada a estas usinas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structural peculiarities of a protein are related to its biological function. In the fatty acid elongation cycle, one small carrier protein shuttles and delivers the acyl intermediates from one enzyme to the other. The carrier has to recognize several enzymatic counterparts, specifically interact with each of them, and finally transiently deliver the carried substrate to the active site. Carry out such a complex game requires the players to be flexible and efficiently adapt their structure to the interacting protein or substrate. In a drug discovery effort, the structure-function relationships of a target system should be taken into account to optimistically interfere with its biological function. In this doctoral work, the essential role of structural plasticity in key steps of fatty acid biosynthesis in Plasmodium falciparum is investigated by means of molecular simulations. The key steps considered include the delivery of acyl substrates and the structural rearrangements of catalytic pockets upon ligand binding. The ground-level bases for carrier/enzyme recognition and interaction are also put forward. The structural features of the target have driven the selection of proper drug discovery tools, which captured the dynamics of biological processes and could allow the rational design of novel inhibitors. The model may be perspectively used for the identification of novel pathway-based antimalarial compounds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 2011, researchers at Bucknell University and Illinois Wesleyan University compared the search efficacy of Serial Solutions Summon, EBSCO Discovery Service, Google Scholar and conventional library databases. Using a mixed-methods approach, qualitative and quantitative data was gathered on students’ usage of these tools. Regardless of the search system, students exhibited a marked inability to effectively evaluate sources and a heavy reliance on default search settings. On the quantitative benchmarks measured by this study, the EBSCO Discovery Service tool outperformed the other search systems in almost every category. This article describes these results and makes recommendations for libraries considering these tools.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Web-scale knowledge retrieval can be enabled by distributed information retrieval, clustering Web clients to a large-scale computing infrastructure for knowledge discovery from Web documents. Based on this infrastructure, we propose to apply semiotic (i.e., sub-syntactical) and inductive (i.e., probabilistic) methods for inferring concept associations in human knowledge. These associations can be combined to form a fuzzy (i.e.,gradual) semantic net representing a map of the knowledge in the Web. Thus, we propose to provide interactive visualizations of these cognitive concept maps to end users, who can browse and search the Web in a human-oriented, visual, and associative interface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Knowledge modeling tools are software tools that follow a modeling approach to help developers in building a knowledge-based system. The purpose of this article is to show the advantages of using this type of tools in the development of complex knowledge-based decision support systems. In order to do so, the article describes the development of a system called SAIDA in the domain of hydrology with the help of the KSM modeling tool. SAIDA operates on real-time receiving data recorded by sensors (rainfall, water levels, flows, etc.). It follows a multi-agent architecture to interpret the data, predict the future behavior and recommend control actions. The system includes an advanced knowledge based architecture with multiple symbolic representation. KSM was especially useful to design and implement the complex knowledge based architecture in an efficient way.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the paper is to discuss the use of knowledge models to formulate general applications. First, the paper presents the recent evolution of the software field where increasing attention is paid to conceptual modeling. Then, the current state of knowledge modeling techniques is described where increased reliability is available through the modern knowledge acquisition techniques and supporting tools. The KSM (Knowledge Structure Manager) tool is described next. First, the concept of knowledge area is introduced as a building block where methods to perform a collection of tasks are included together with the bodies of knowledge providing the basic methods to perform the basic tasks. Then, the CONCEL language to define vocabularies of domains and the LINK language for methods formulation are introduced. Finally, the object oriented implementation of a knowledge area is described and a general methodology for application design and maintenance supported by KSM is proposed. To illustrate the concepts and methods, an example of system for intelligent traffic management in a road network is described. This example is followed by a proposal of generalization for reuse of the resulting architecture. Finally, some concluding comments are proposed about the feasibility of using the knowledge modeling tools and methods for general application design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

According to the PMBOK (Project Management Body of Knowledge), project management is “the application of knowledge, skills, tools, and techniques to project activities to meet the project requirements” [1]. Project Management has proven to be one of the most important disciplines at the moment of determining the success of any project [2][3][4]. Given that many of the activities covered by this discipline can be said that are “horizontal” for any kind of domain, the importance of acknowledge the concepts and practices becomes even more obvious. The specific case of the projects that fall in the domain of Software Engineering are not the exception about the great influence of Project Management for their success. The critical role that this discipline plays in the industry has come to numbers. A report by McKinsey & Co [4] shows that the establishment of programs for the teaching of critical skills of project management can improve the performance of the project in time and costs. As an example of the above, the reports exposes: “One defense organization used these programs to train several waves of project managers and leaders who together administered a portfolio of more than 1,000 capital projects ranging in Project management size from $100,000 to $500 million. Managers who successfully completed the training were able to cut costs on most projects by between 20 and 35 percent. Over time, the organization expects savings of about 15 percent of its entire baseline spending”. In a white paper by the PMI (Project Management Institute) about the value of project management [5], it is stated that: “Leading organizations across sectors and geographic borders have been steadily embracing project management as a way to control spending and improve project results”. According to the research made by the PMI for the paper, after the economical crisis “Executives discovered that adhering to project management methods and strategies reduced risks, cut costs and improved success rates—all vital to surviving the economic crisis”. In every elite company, a proper execution of the project management discipline has become a must. Several members of the software industry have putted effort into achieving ways of assuring high quality results from projects; many standards, best practices, methodologies and other resources have been produced by experts from different fields of expertise. In the industry and the academic community, there is a continuous research on how to teach better software engineering together with project management [4][6]. For the general practices of Project Management the PMI produced a guide of the required knowledge that any project manager should have in their toolbox to lead any kind of project, this guide is called the PMBOK. On the side of best practices 10 and required knowledge for the Software Engineering discipline, the IEEE (Institute of Electrical and Electronics Engineers) developed the SWEBOK (Software Engineering Body of Knowledge) in collaboration with software industry experts and academic researchers, introducing into the guide many of the needed knowledge for a 5-year expertise software engineer [7]. The SWEBOK also covers management from the perspective of a software project. This thesis is developed to provide guidance to practitioners and members of the academic community about project management applied to software engineering. The way used in this thesis to get useful information for practitioners is to take an industry-approved guide for software engineering professionals such as the SWEBOK, and compare the content to what is found in the PMBOK. After comparing the contents of the SWEBOK and the PMBOK, what is found missing in the SWEBOK is used to give recommendations on how to enrich project management skills for a software engineering professional. Recommendations for members of the academic community on the other hand, are given taking into account the GSwE2009 (Graduated Software Engineering 2009) standard [8]. GSwE2009 is often used as a main reference for software engineering master programs [9]. The standard is mostly based on the content of the SWEBOK, plus some contents that are considered to reinforce the education of software engineering. Given the similarities between the SWEBOK and the GSwE2009, the results of comparing SWEBOK and PMBOK are also considered valid to enrich what the GSwE2009 proposes. So in the end the recommendations for practitioners end up being also useful for the academic community and their strategies to teach project management in the context of software engineering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El avance tecnológico de los últimos años ha aumentado la necesidad de guardar enormes cantidades de datos de forma masiva, llegando a una situación de desorden en el proceso de almacenamiento de datos, a su desactualización y a complicar su análisis. Esta situación causó un gran interés para las organizaciones en la búsqueda de un enfoque para obtener información relevante de estos grandes almacenes de datos. Surge así lo que se define como inteligencia de negocio, un conjunto de herramientas, procedimientos y estrategias para llevar a cabo la “extracción de conocimiento”, término con el que se refiere comúnmente a la extracción de información útil para la propia organización. Concretamente en este proyecto, se ha utilizado el enfoque Knowledge Discovery in Databases (KDD), que permite lograr la identificación de patrones y un manejo eficiente de las anomalías que puedan aparecer en una red de comunicaciones. Este enfoque comprende desde la selección de los datos primarios hasta su análisis final para la determinación de patrones. El núcleo de todo el enfoque KDD es la minería de datos, que contiene la tecnología necesaria para la identificación de los patrones mencionados y la extracción de conocimiento. Para ello, se utilizará la herramienta RapidMiner en su versión libre y gratuita, debido a que es más completa y de manejo más sencillo que otras herramientas como KNIME o WEKA. La gestión de una red engloba todo el proceso de despliegue y mantenimiento. Es en este procedimiento donde se recogen y monitorizan todas las anomalías ocasionadas en la red, las cuales pueden almacenarse en un repositorio. El objetivo de este proyecto es realizar un planteamiento teórico y varios experimentos que permitan identificar patrones en registros de anomalías de red. Se ha estudiado el repositorio de MAWI Lab, en el que se han almacenado anomalías diarias. Se trata de buscar indicios característicos anuales detectando patrones. Los diferentes experimentos y procedimientos de este estudio pretenden demostrar la utilidad de la inteligencia de negocio a la hora de extraer información a partir de un almacén de datos masivo, para su posterior análisis o futuros estudios. ABSTRACT. The technological progresses in the recent years required to store a big amount of information in repositories. This information is often in disorder, outdated and needs a complex analysis. This situation has caused a relevant interest in investigating methodologies to obtain important information from these huge data stores. Business intelligence was born as a set of tools, procedures and strategies to implement the "knowledge extraction". Specifically in this project, Knowledge Discovery in Databases (KDD) approach has been used. KDD is one of the most important processes of business intelligence to achieve the identification of patterns and the efficient management of the anomalies in a communications network. This approach includes all necessary stages from the selection of the raw data until the analysis to determine the patterns. The core process of the whole KDD approach is the Data Mining process, which analyzes the information needed to identify the patterns and to extract the knowledge. In this project we use the RapidMiner tool to carry out the Data Mining process, because this tool has more features and is easier to use than other tools like WEKA or KNIME. Network management includes the deployment, supervision and maintenance tasks. Network management process is where all anomalies are collected, monitored, and can be stored in a repository. The goal of this project is to construct a theoretical approach, to implement a prototype and to carry out several experiments that allow identifying patterns in some anomalies records. MAWI Lab repository has been selected to be studied, which contains daily anomalies. The different experiments show the utility of the business intelligence to extract information from big data warehouse.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vivimos en una sociedad en la que la información ha adquirido una vital importancia. El uso de Internet y el desarrollo de nuevos sistemas de la información han generado un ferviente interés tanto de empresas como de instituciones en la búsqueda de nuevos patrones que les proporcione la clave del éxito. La Analítica de Negocio reúne un conjunto de herramientas, estrategias y técnicas orientadas a la explotación de la información con el objetivo de crear conocimiento útil dentro de un marco de trabajo y facilitar la optimización de los recursos tanto de empresas como de instituciones. El presente proyecto se enmarca en lo que se conoce como Gestión Educativa. Se aplicará una arquitectura y modelo de trabajo similar a lo que se ha venido haciendo en los últimos años en el entorno empresarial con la Inteligencia de Negocio. Con esta variante, se pretende mejorar la calidad de la enseñanza, agilizar las decisiones dentro de la institución académica, fortalecer las capacidades del cuerpo docente y en definitiva favorecer el aprendizaje del alumnado. Para lograr el objetivo se ha decidido seguir las etapas del Knowledge Discovery in Databases (KDD), una de las metodologías más conocidas dentro de la Inteligencia de Negocio, que describe el procedimiento que va desde la selección de la información y su carga en sistemas de almacenamiento, hasta la aplicación de técnicas de minería de datos para la obtención nuevo conocimiento. Los estudios se realizan a partir de la información de la activad de los usuarios dentro la plataforma de Tele-Enseñanza de la Universidad Politécnica de Madrid (Moodle). Se desarrollan trabajos de extracción y preprocesado de la base de datos en crudo y se aplican técnicas de minería de datos. En la aplicación de técnicas de minería de datos, uno de los factores más importantes a tener en cuenta es el tipo de información que se va a tratar. Por este motivo, se trabaja con la Minería de Datos Educativa, en inglés, Educational Data Mining (EDM) que consiste en la aplicación de técnicas de minería optimizadas para la información que se genera en entornos educativos. Dentro de las posibilidades que ofrece el EDM, se ha decidido centrar los estudios en lo que se conoce como analítica predictiva. El objetivo fundamental es conocer la influencia que tienen las interacciones alumno-plataforma en las calificaciones finales y descubrir nuevas reglas que describan comportamientos que faciliten al profesorado discriminar si un estudiante va a aprobar o suspender la asignatura, de tal forma que se puedan tomar medidas que mejoren su rendimiento. Toda la información tratada en el presente proyecto ha sido previamente anonimizada para evitar cualquier tipo de intromisión que atente contra la privacidad de los elementos participantes en el estudio. ABSTRACT. We live in a society dominated by data. The use of the Internet accompanied by developments in information systems has generated a sustained interest among companies and institutions to discover new patterns to succeed in their business ventures. Business Analytics (BA) combines tools, strategies and techniques focused on exploiting the available information, to optimize resources and create useful insight. The current project is framed under Educational Management. A Business Intelligence (BI) architecture and business models taught up to date will be applied with the aim to accelerate the decision-making in academic institutions, strengthen teacher´s skills and ultimately improve the quality of teaching and learning. The best way to achieve this is to follow the Knowledge Discovery in Databases (KDD), one of the best-known methodologies in B.I. This process describes data preparation, selection, and cleansing through to the application of purely Data Mining Techniques in order to incorporate prior knowledge on data sets and interpret accurate solutions from the observed results. The studies will be performed using the information extracted from the Universidad Politécnica de Madrid Learning Management System (LMS), Moodle. The stored data is based on the user-platform interaction. The raw data will be extracted and pre-processed and afterwards, Data Mining Techniques will be applied. One of the crucial factors in the application of Data Mining Techniques is the kind of information that will be processed. For this reason, a new Data Mining perspective will be taken, called Educational Data Mining (EDM). EDM consists of the application of Data Mining Techniques but optimized for the raw data generated by the educational environment. Within EDM, we have decided to drive our research on what is called Predictive Analysis. The main purpose is to understand the influence of the user-platform interactions in the final grades of students and discover new patterns that explain their behaviours. This could allow teachers to intervene ahead of a student passing or failing, in such a way an action could be taken to improve the student performance. All the information processed has been previously anonymized to avoid the invasion of privacy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With this paper, we propose a set of techniques to largely automate the process of KA, by using technologies based on Information Extraction (IE) , Information Retrieval and Natural Language Processing. We aim to reduce all the impeding factors mention above and thereby contribute to the wider utility of the knowledge management tools. In particular we intend to reduce the introspection of knowledge engineers or the extended elicitations of knowledge from experts by extensive textual analysis using a variety of methods and tools, as texts are largely available and in them - we believe - lies most of an organization's memory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study here highlights the potential that analytical methods based on Knowledge Discovery in Databases (KDD) methodologies have to aid both the resolution of unstructured marketing/business problems and the process of scholarly knowledge discovery. The authors present and discuss the application of KDD in these situations prior to the presentation of an analytical method based on fuzzy logic and evolutionary algorithms, developed to analyze marketing databases and uncover relationships among variables. A detailed implementation on a pre-existing data set illustrates the method. © 2012 Published by Elsevier Inc.