938 resultados para K-Nearest Neighbor
Resumo:
A new method of face recognition, based on Biomimetic Pattern Recognition and Multi-Weights Neuron Network, had been proposed. A model for face recognition that is based on Biomimetic Pattern Recognition had been discussed, and a new method of facial feature extraction also had been introduced. The results of experiments with BPR and K-Nearest Neighbor Rules showed that the method based on BPR can eliminate the error recognition of the samples of the types that not be trained, the correct rate is also enhanced.
Resumo:
The performance of different classification approaches is evaluated using a view-based approach for motion representation. The view-based approach uses computer vision and image processing techniques to register and process the video sequence. Two motion representations called Motion Energy Images and Motion History Image are then constructed. These representations collapse the temporal component in a way that no explicit temporal analysis or sequence matching is needed. Statistical descriptions are then computed using moment-based features and dimensionality reduction techniques. For these tests, we used 7 Hu moments, which are invariant to scale and translation. Principal Components Analysis is used to reduce the dimensionality of this representation. The system is trained using different subjects performing a set of examples of every action to be recognized. Given these samples, K-nearest neighbor, Gaussian, and Gaussian mixture classifiers are used to recognize new actions. Experiments are conducted using instances of eight human actions (i.e., eight classes) performed by seven different subjects. Comparisons in the performance among these classifiers under different conditions are analyzed and reported. Our main goals are to test this dimensionality-reduced representation of actions, and more importantly to use this representation to compare the advantages of different classification approaches in this recognition task.
Resumo:
In existing WiFi-based localization methods, smart mobile devices consume quite a lot of power as WiFi interfaces need to be used for frequent AP scanning during the localization process. In this work, we design an energy-efficient indoor localization system called ZigBee assisted indoor localization (ZIL) based on WiFi fingerprints via ZigBee interference signatures. ZIL uses ZigBee interfaces to collect mixed WiFi signals, which include non-periodic WiFi data and periodic beacon signals. However, WiFi APs cannot be identified from these WiFi signals by ZigBee interfaces directly. To address this issue, we propose a method for detecting WiFi APs to form WiFi fingerprints from the signals collected by ZigBee interfaces. We propose a novel fingerprint matching algorithm to align a pair of fingerprints effectively. To improve the localization accuracy, we design the K-nearest neighbor (KNN) method with three different weighted distances and find that the KNN algorithm with the Manhattan distance performs best. Experiments show that ZIL can achieve the localization accuracy of 87%, which is competitive compared to state-of-the-art WiFi fingerprint-based approaches, and save energy by 68% on average compared to the approach based on WiFi interface.
Resumo:
This paper presents a Robust Content Based Video Retrieval (CBVR) system. This system retrieves similar videos based on a local feature descriptor called SURF (Speeded Up Robust Feature). The higher dimensionality of SURF like feature descriptors causes huge storage consumption during indexing of video information. To achieve a dimensionality reduction on the SURF feature descriptor, this system employs a stochastic dimensionality reduction method and thus provides a model data for the videos. On retrieval, the model data of the test clip is classified to its similar videos using a minimum distance classifier. The performance of this system is evaluated using two different minimum distance classifiers during the retrieval stage. The experimental analyses performed on the system shows that the system has a retrieval performance of 78%. This system also analyses the performance efficiency of the low dimensional SURF descriptor.
Resumo:
In this paper, we develop a novel index structure to support efficient approximate k-nearest neighbor (KNN) query in high-dimensional databases. In high-dimensional spaces, the computational cost of the distance (e.g., Euclidean distance) between two points contributes a dominant portion of the overall query response time for memory processing. To reduce the distance computation, we first propose a structure (BID) using BIt-Difference to answer approximate KNN query. The BID employs one bit to represent each feature vector of point and the number of bit-difference is used to prune the further points. To facilitate real dataset which is typically skewed, we enhance the BID mechanism with clustering, cluster adapted bitcoder and dimensional weight, named the BID⁺. Extensive experiments are conducted to show that our proposed method yields significant performance advantages over the existing index structures on both real life and synthetic high-dimensional datasets.
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
An important feature of a database management systems (DBMS) is its client/server architecture, where managing shared memory among the clients and the server is always an tough issue. However, similarity queries are specially sensitive to this kind of architecture, since the answer sizes vary widely. Usually, the answers of similarity query are fully processed to be sent in full to the user, who often is interested in just parts of the answer, e.g. just few elements closer or farther to the query reference. Compelling the DBMS to retrieve the full answer, further ignoring its majority is at least a waste of server processing power. Paging the answer is a technique that splits the answer onto several pages, following client requests. Despite the success of paging on traditional queries, little work has been done to support it in similarity queries. In this work, we present a technique that not only provides paging in similarity range or k-nearest neighbor queries, but also supports them in two variations: the forward similarity query and the backward similarity query. They return elements either increasingly farther of increasingly closer to the query reference. The reported experiments show that, depending on the proportion of the interesting part over the full answer, both techniques allow answering queries much faster than it is obtained in the non-paged way. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Objective: To define and evaluate a Computer-Vision (CV) method for scoring Paced Finger-Tapping (PFT) in Parkinson's disease (PD) using quantitative motion analysis of index-fingers and to compare the obtained scores to the UPDRS (Unified Parkinson's Disease Rating Scale) finger-taps (FT). Background: The naked-eye evaluation of PFT in clinical practice results in coarse resolution to determine PD status. Besides, sensor mechanisms for PFT evaluation may cause patients discomfort. In order to avoid cost and effort of applying wearable sensors, a CV system for non-invasive PFT evaluation is introduced. Methods: A database of 221 PFT videos from 6 PD patients was processed. The subjects were instructed to position their hands above their shoulders besides the face and tap the index-finger against the thumb consistently with speed. They were facing towards a pivoted camera during recording. The videos were rated by two clinicians between symptom levels 0-to-3 using UPDRS-FT. The CV method incorporates a motion analyzer and a face detector. The method detects the face of testee in each video-frame. The frame is split into two images from face-rectangle center. Two regions of interest are located in each image to detect index-finger motion of left and right hands respectively. The tracking of opening and closing phases of dominant hand index-finger produces a tapping time-series. This time-series is normalized by the face height. The normalization calibrates the amplitude in tapping signal which is affected by the varying distance between camera and subject (farther the camera, lesser the amplitude). A total of 15 features were classified using K-nearest neighbor (KNN) classifier to characterize the symptoms levels in UPDRS-FT. The target ratings provided by the raters were averaged. Results: A 10-fold cross validation in KNN classified 221 videos between 3 symptom levels with 75% accuracy. An area under the receiver operating characteristic curves of 82.6% supports feasibility of the obtained features to replicate clinical assessments. Conclusions: The system is able to track index-finger motion to estimate tapping symptoms in PD. It has certain advantages compared to other technologies (e.g. magnetic sensors, accelerometers etc.) for PFT evaluation to improve and automate the ratings
Resumo:
Nowadays, classifying proteins in structural classes, which concerns the inference of patterns in their 3D conformation, is one of the most important open problems in Molecular Biology. The main reason for this is that the function of a protein is intrinsically related to its spatial conformation. However, such conformations are very difficult to be obtained experimentally in laboratory. Thus, this problem has drawn the attention of many researchers in Bioinformatics. Considering the great difference between the number of protein sequences already known and the number of three-dimensional structures determined experimentally, the demand of automated techniques for structural classification of proteins is very high. In this context, computational tools, especially Machine Learning (ML) techniques, have become essential to deal with this problem. In this work, ML techniques are used in the recognition of protein structural classes: Decision Trees, k-Nearest Neighbor, Naive Bayes, Support Vector Machine and Neural Networks. These methods have been chosen because they represent different paradigms of learning and have been widely used in the Bioinfornmatics literature. Aiming to obtain an improvment in the performance of these techniques (individual classifiers), homogeneous (Bagging and Boosting) and heterogeneous (Voting, Stacking and StackingC) multiclassification systems are used. Moreover, since the protein database used in this work presents the problem of imbalanced classes, artificial techniques for class balance (Undersampling Random, Tomek Links, CNN, NCL and OSS) are used to minimize such a problem. In order to evaluate the ML methods, a cross-validation procedure is applied, where the accuracy of the classifiers is measured using the mean of classification error rate, on independent test sets. These means are compared, two by two, by the hypothesis test aiming to evaluate if there is, statistically, a significant difference between them. With respect to the results obtained with the individual classifiers, Support Vector Machine presented the best accuracy. In terms of the multi-classification systems (homogeneous and heterogeneous), they showed, in general, a superior or similar performance when compared to the one achieved by the individual classifiers used - especially Boosting with Decision Tree and the StackingC with Linear Regression as meta classifier. The Voting method, despite of its simplicity, has shown to be adequate for solving the problem presented in this work. The techniques for class balance, on the other hand, have not produced a significant improvement in the global classification error. Nevertheless, the use of such techniques did improve the classification error for the minority class. In this context, the NCL technique has shown to be more appropriated
Resumo:
The objective of the researches in artificial intelligence is to qualify the computer to execute functions that are performed by humans using knowledge and reasoning. This work was developed in the area of machine learning, that it s the study branch of artificial intelligence, being related to the project and development of algorithms and techniques capable to allow the computational learning. The objective of this work is analyzing a feature selection method for ensemble systems. The proposed method is inserted into the filter approach of feature selection method, it s using the variance and Spearman correlation to rank the feature and using the reward and punishment strategies to measure the feature importance for the identification of the classes. For each ensemble, several different configuration were used, which varied from hybrid (homogeneous) to non-hybrid (heterogeneous) structures of ensemble. They were submitted to five combining methods (voting, sum, sum weight, multiLayer Perceptron and naïve Bayes) which were applied in six distinct database (real and artificial). The classifiers applied during the experiments were k- nearest neighbor, multiLayer Perceptron, naïve Bayes and decision tree. Finally, the performance of ensemble was analyzed comparatively, using none feature selection method, using a filter approach (original) feature selection method and the proposed method. To do this comparison, a statistical test was applied, which demonstrate that there was a significant improvement in the precision of the ensembles
Resumo:
The efficacy of fluorescence spectroscopy to detect squamous cell carcinoma is evaluated in an animal model following laser excitation at 442 and 532 nm. Lesions are chemically induced with a topical DMBA application at the left lateral tongue of Golden Syrian hamsters. The animals are investigated every 2 weeks after the 4th week of induction until a total of 26 weeks. The right lateral tongue of each animal is considered as a control site (normal contralateral tissue) and the induced lesions are analyzed as a set of points covering the entire clinically detectable area. Based on fluorescence spectral differences, four indices are determined to discriminate normal and carcinoma tissues, based on intraspectral analysis. The spectral data are also analyzed using a multivariate data analysis and the results are compared with histology as the diagnostic gold standard. The best result achieved is for blue excitation using the KNN (K-nearest neighbor, a interspectral analysis) algorithm with a sensitivity of 95.7% and a specificity of 91.6%. These high indices indicate that fluorescence spectroscopy may constitute a fast noninvasive auxiliary tool for diagnostic of cancer within the oral cavity. (C) 2008 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Métodos quimiométricos (estatísticos) são empregados para classificar um conjunto de compostos derivados de neolignanas com atividade biológica contra a Paracoccidioides brasiliensis. O método AM1 (Austin Model 1) foi utilizado para calcular um conjunto de descritores moleculares (propriedades) para os compostos em estudo. A seguir, os descritores foram analisados utilizando os seguintes métodos de reconhecimento de padrões: Análise de Componentes Principais (PCA), Análise Hierárquica de Agrupamentos (HCA) e o método de K-vizinhos mais próximos (KNN). Os métodos PCA e HCA mostraram-se bastante eficientes para classificação dos compostos estudados em dois grupos (ativos e inativos). Três descritores moleculares foram responsáveis pela separação entre os compostos ativos e inativos: energia do orbital molecular mais alto ocupado (EHOMO), ordem de ligação entre os átomos C1'-R7 (L14) e ordem de ligação entre os átomos C5'-R6 (L22). Como as variáveis responsáveis pela separação entre compostos ativos e inativos são descritores eletrônicos, conclui-se que efeitos eletrônicos podem desempenhar um importante papel na interação entre receptor biológico e compostos derivados de neolignanas com atividade contra a Paracoccidioides brasiliensis.
Resumo:
Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SUM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SUM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SUM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.