981 resultados para Job exposure matrix


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alkyl esters of p–hydroxybenzoic acid (parabens) are widely used as preservatives in personal care products, foods and pharmaceuticals. Their oestrogenic activity, their measurement in human breast tissue and their ability to drive proliferation of oestrogen-responsive human breast cancer cells has opened a debate on their potential to influence breast cancer development. Since proliferation is not the only hallmark of cancer cells, we have investigated the effects of exposure to parabens at concentrations of maximal proliferative response on migratory and invasive properties using three oestrogen-responsive human breast cancer cell lines (MCF-7, T-47-D, ZR-75-1). Cells were maintained short-term (1 week) or long-term (20±2 weeks) in phenol-red-free medium containing 5% charcoal-stripped serum with no addition, 10-8M 17-oestradiol, 1-5x10-4M methylparaben, 10-5M n-propylparaben or 10-5M n-butylparaben. Long-term exposure (20±2 weeks) of MCF-7 cells to methylparaben, n-propylparaben or n-butylparaben increased migration as measured using a scratch assay, time-lapse microscopy and xCELLigence technology: invasive properties were found to increase in matrix degradation assays and migration through matrigel on xCELLigence. Western immunoblotting showed an associated downregulation of E-cadherin and -catenin in the long-term paraben-exposed cells which could be consistent with a mechanism involving epithelial to mesenchymal transition. Increased migratory activity was demonstrated also in long-term paraben-exposed T-47-D and ZR-75-1 cells using a scratch assay and time-lapse microscopy. This is the first report that in vitro, parabens can influence not only proliferation but also migratory and invasive properties of human breast cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: We investigated effects of chronic exposure (2 months) to ambient levels of particulate matter (PM) on development of protease-induced emphysema and pulmonary remodeling in mice. Methods: Balb/c mice received nasal drop of either papain or normal saline and were kept in two exposure chambers situated in an area with high traffic density. One of them received ambient air and the other had filters for PM. Results: mean concentration of PM10 was 2.68 +/- 0.38 and 33.86 +/- 2.09 mu g/m(3), respectively, in the filtered and ambient air chambers (p<0.001). After 2 months of exposure, lungs from papain-treated mice kept in the chamber with ambient air presented greater values of mean linear intercept, an increase in density of collagen fibers in alveolar septa and in expression of 8-isoprostane (p = 0.002, p < 0.05 and p = 0.002, respectively, compared to papain-treated mice kept in the chamber with filtered air). We did not observe significant differences between these two groups in density of macrophages and in amount of cells expressing matrix metalloproteinase-12. There were no significant differences in saline-treated mice kept in the two chambers. Conclusions: We conclude that exposure to urban levels of PM worsens protease-induced emphysema and increases pulmonary remodeling. We suggest that an increase in oxidative stress induced by PM exposure influences this response. These pulmonary effects of PM were observed only in mice with emphysema. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the many existing crosslinking procedures, glutaraldehyde (GA) is still the method of choice used in the manufacture of bioprosthesis. The major problems with GA are: (a) uncontrolled reactivity due to the chemical complexity or GA solutions; (b) toxicity due to the release of GA from polymeric crosslinks; and (c) tissue impermeabilization due to polymeric and heterogeneous crosslinks formation, partially responsible for the undesirable calcification of the bioprosthesis. A new method of crosslinking glutaraldehyde acetals has been developed with GA in acid ethanolic solution, and after the distribution inside de matrix, GA is released to crosslinking. Concentrations of hydrochloride acid in ethanolic solutions between 0.1 and 0.001 mol/L with GA concentration between 0.1 and 1.0% were measured in an ultraviolet spectrophotometer to verify the presence of free aldehyde groups and polymeric compounds of GA. After these measurements, the solutions were used to crosslink bovine pericardium. The spectrophotometric results showed that GA was better protected in acetal forms for acid ethanolic solution with HCl at 0.003 mol/L and GA 1.0%(v/v). The shrinkage temperature results of bovine pericardium crosslinked with acetal solutions showed values near 85 C after the exposure to triethylamine vapors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A matriz extracelular (MEC) desempenha um papel importante em lesões hepáticas crônicas e tem sido estudada em modelos de intoxicação experimental. em bovinos, no entanto, não há estudos específicos sobre a MEC hepática normal ou com lesões crônicas. Por isso, foi desenvolvido um modelo de intoxicação experimental hepático usando Senecio brasilliensis, uma planta que contém alcalóides pirrolizidínicos e causa lesão hepática dependente da dose. Cinco bezerros receberam por via oral, 0.38g/kg de folhas secas por 24 dias. Biópsias hepáticas foram obtidas a cada 15 dias durante 60 dias. Sinais clínicos de complicações digestivas surgiram da terceira semana do experimento. Um bezerro morreu aos 45 dias e os outros quatro foram avaliados até os 60 dias. As biópsias hepáticas foram processadas para microscopia óptica, imuno-histoquímica e microscopia eletrônica de transmissão. No trigésimo dia, as lesões hepáticas eram progessivas caracterizadas por vacuolização hepatocelular, necrose, apoptose, megalocitose, e fibrose centrolobular, pericelular e portal. Foram realizadas avaliações quantitativas e semi-quantitativas de componentes da MEC hepática antes e após o aparecimento das lesões. Foi realizada morfometria do colágeno total e do sistema de fibras elásticas. Colágeno total e colágenos tipos I e III aumentaram progressivamente em todos os locais do fígado. Mudanças na localização, quantidade e disposição do sistema de fibras elásticas foram também observadas. Houve um aumento significativo de células de Kupffer aos 30 dias e de células sinusoidais totais aos 45 e 60 dias. As lesões hepáticas neste experimento foram progressivas mesmo após a remoção da planta. Lesões de fibrose severa foram localizadas principalmente nos espaços porta, seguido por fibrose veno-oclusiva e pericelular. Os colágenos tipo I e tipo III foram observados no fígado normal e no fígado dos bezerros afetados, com predomínio do tipo I. Nos bezerros afetados o aumento do colágeno total e do sistema de fibras elásticas foi paralelo ao aumento no número das células sinusoidais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To characterize the interaction of 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide Hydrochloride (EDC) with dentin matrix and its effect on the resin-dentin bond. Methods: Changes to the stiffness of demineralized dentin fragments treated with EDC/N-hydroxysuccinimide (NHS) in different solutions were evaluated at different time points. The resistance against enzymatic degradation was indirectly evaluated by ultimate tensile strength (UTS) test of demineralized dentin treated or not with EDC/NHS and subjected to collagenase digestion. Short- and long-term evaluations of the strength of resin-dentin interfaces treated with EDC/NHS for 1 h were performed using microtensile bond strength (mu TBS) test. All data (MPa) were individually analyzed using ANOVA and Tukey HSD tests (alpha = 0.05). Results: The different exposure times significantly increased the stiffness of dentin (p < 0.0001, control-5.15 and EDC/NHS-29.50), while no differences were observed among the different solutions of EDC/NHS (p = 0.063). Collagenase challenge did not affect the UTS values of EDC/NHS group (6.08) (p > 0.05), while complete degradation was observed for the control group (p = 0.0008, control-20.84 and EDC/NHS-43.15). EDC/NHS treatment did not significantly increase resin-dentin mu TBS, but the values remained stable after 12 months water storage (p < 0.05). Conclusions: Biomimetic use of EDC/NHS to induce exogenous collagen cross-links resulted in increased mechanical properties and stability of dentin matrix and dentin-resin interfaces. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 250-255, 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study evaluated the surface degradation effect of acidulated phosphate fluoride (APF) gel exposure on the glassy matrix ceramics as a function of time. Material and methods: Disc-shaped ceramic specimens (N = 120, 10/per ceramic material) were prepared in stainless steel molds (inner diameter: 5 mm, height: 2 mm) using 6 dental ceramics: 3 indicated for ceramic-fused-to-metal (Vita Omega 900, Carmen and Vita Titankeramik), 2 for all-ceramic (Vitadur Alpha and Finesse (R) Low Fusing) and 1 for both types of restorations (IPS d. SIGN). The specimens were wet ground finished, ultrasonically cleaned and auto-glazed. All specimens were subjected to calculation of percentage of mass loss, surface roughness analysis and topographical description by scanning electron microscopy (SEM) before (0 min) and after exposure to 1.23 % APF gel for 4 min and 60 min representing short-and long-term etching effect, respectively. The data were analyzed using two-way ANOVA with repeated measures and Tukey` s test (alpha=0.05). Results: Significant effect of the type of the ceramics (p=0.0000, p=0.0031) and exposure time (p=0.0000) was observed in both surface roughness and percentage of mass loss values, respectively. The interaction factor between both parameters was also significant for both parameters (p=0.0904, p=0.0258). Both 4 min (0.44 +/- 0.1-0.81 +/- 0.2 mu m) and 60 min (0.66 +/- 0.1 - 1.04 +/- 0.3 mu m) APF gel exposure created significantly more surface roughness for all groups when compared to the control groups (0.33 +/- 0.2-0.68 +/- 0.2 mu m) (p<0.05). There were no significant differences in percentage of mass loss between the ceramics at 4 min (p>0.05) but at 60 min exposure, IPS d. SIGN showed the highest percentage of mass loss (0.1151 +/- 0.11). The mean surface roughness for Vita Titankeramik (0.84 +/- 0.2 mu m) and Finesse (R) Low Fusing (0.74.+/- 0.2 mu m) was significantly higher than those of the other ceramics (0.59 +/- 0.1 mu m - 0.49 +/- 0.1 mu m) and Vita Titankeramik (p<0.05) regardless of the exposure time. A positive correlation was found between surface roughness and percentage of mass loss for all ceramic materials [(r=0.518 (Vitadur Alpha), r=0.405 (Vita Omega 900), r=0.580 (Carmen), r=0.687 (IPS d. SIGN), r=0.442 (Finesse (R) Low Fusing), r=0.572 (Vita Titankeramik), Pearson's correlation coefficient)]. The qualitative SEM analysis showed evidence of corrosive attack on all of ceramics at varying degrees. Conclusions: The ceramics indicated for either metal-ceramic or all-ceramic restorations were all vulnerable to surface texture changes and mass loss after short-term and long-term APF gel exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims and objectives: The behavior of polymer-matrix composite is dependent on the degree of conversion. The aim of this study was to evaluate the degree of conversion of two resin cements following storage at 37°C immediately, 24 and 48 hours, and 7 days after light-curing by FTIR analysis. Materials and methods: The specimens were made in a metallic mold and cured with blue LED with power density of 500 mW/cm2 for 30 seconds. The specimens were pulverized, pressed with KBr and analyzed with FTIR following storage times. Statistical analysis used: ANOVA (two-way) and Tukey's post hoc. Results: To the polymer-matrix composites between 24 and 48 hours does not show a significant increase (p > 0.05), however, the highest values were found after 7 days. Conclusion: The polymer-matrix composites used in this study showed similarity on the degree of conversion and increased of according to the time of storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundacao de Amparo a Pesquisa do Estado de sao Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has recently been suggested that regular exercise reduces lung function decline and risk of chronic obstructive pulmonary disease (COPD) among active smokers; however, the mechanisms involved in this effect remain poorly understood. The present study evaluated the effects of regular exercise training in an experimental mouse model of chronic cigarette smoke exposure. Male C57BL/6 mice were divided into four groups (control, exercise, smoke and smoke+exercise). For 24 weeks, we measured respiratory mechanics, mean linear intercept, inflammatory cells and reactive oxygen species (ROS) in bronchoalveolar lavage (BAL) fluid, collagen deposition in alveolar walls, and the expression of antioxidant enzymes, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase (TIMP) 1, interleukin (IL)-10 and 8-isoprostane in alveolar walls. Exercise attenuated the decrease in pulmonary elastance (p<0.01) and the increase in mean linear intercept (p=0.003) induced by cigarette smoke exposure. Exercise substantially inhibited the increase in ROS in BAL fluid and 8-isoprostane expression in lung tissue induced by cigarette smoke. In addition, exercise significantly inhibited the decreases in IL-10, TIMP1 and CuZn superoxide dismutase induced by exposure to cigarette smoke. Exercise also increased the number of cells expressing glutathione peroxidase. Our results suggest that regular aerobic physical training of moderate intensity attenuates the development of pulmonary disease induced by cigarette smoke exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous time series studies have provided strong evidence of an association between increased levels of ambient air pollution and increased levels of hospital admissions, typically at 0, 1, or 2 days after an air pollution episode. An important research aim is to extend existing statistical models so that a more detailed understanding of the time course of hospitalization after exposure to air pollution can be obtained. Information about this time course, combined with prior knowledge about biological mechanisms, could provide the basis for hypotheses concerning the mechanism by which air pollution causes disease. Previous studies have identified two important methodological questions: (1) How can we estimate the shape of the distributed lag between increased air pollution exposure and increased mortality or morbidity? and (2) How should we estimate the cumulative population health risk from short-term exposure to air pollution? Distributed lag models are appropriate tools for estimating air pollution health effects that may be spread over several days. However, estimation for distributed lag models in air pollution and health applications is hampered by the substantial noise in the data and the inherently weak signal that is the target of investigation. We introduce an hierarchical Bayesian distributed lag model that incorporates prior information about the time course of pollution effects and combines information across multiple locations. The model has a connection to penalized spline smoothing using a special type of penalty matrix. We apply the model to estimating the distributed lag between exposure to particulate matter air pollution and hospitalization for cardiovascular and respiratory disease using data from a large United States air pollution and hospitalization database of Medicare enrollees in 94 counties covering the years 1999-2002.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pharmaceuticals are ubiquitous in surface waters as a consequence of discharges from municipal wastewater treatment plants. However, few studies have assessed the bioavailability of pharmaceuticals to fish in natural waters. In the present study, passive samplers and rainbow trout were experimentally deployed next to three municipal wastewater treatment plants in Finland to evaluate the degree of animal exposure. Pharmaceuticals from several therapeutic classes (in total 15) were analyzed by liquid chromatography-tandem mass spectrometry in extracts of passive samplers and in bile and blood plasma of rainbow trout held at polluted sites for 10 d. Each approach indicated the highest exposure near wastewater treatment plant A and the lowest near that of plant C. Diclofenac, naproxen, and ibuprofen were found in rainbow trout, and their concentrations in bile were 10 to 400 times higher than in plasma. The phase I metabolite hydroxydiclofenac was also detected in bile. Hence, bile proved to be an excellent sample matrix for the exposure assessment of fish. Most of the monitored pharmaceuticals were found in passive samplers, implying that they may overestimate the actual exposure of fish in receiving waters. Two biomarkers, hepatic vitellogenin and cytochrome P4501A, did not reveal clear effects on fish, although a small induction of vitellogenin mRNA was observed in trout caged near wastewater treatment plants B and C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Most previous studies have found that Enterococcus faecalis isolates do not show significant adherence to fibronectin and fibrinogen. METHODS: The influence of various conditions on E. faecalis adherence to extracellular matrix (ECM) proteins was evaluated using a radiolabeled-cell adherence assay. RESULTS: Among the conditions studied, growth in 40% horse serum (a biological cue with potential clinical relevance) elicited adherence of all 46 E. faecalis strains tested to fibronectin and fibrinogen but not to elastin; adherence levels were independent of strain source, and adherence was eliminated by treating cells with trypsin. As previously reported, serum also elicited adherence to collagen. Although prolonged exposure to serum during growth was needed for enhancement of adherence to fibrinogen, brief exposure (<5 >min) to serum had an immediate, although partial, enhancing effect on adherence to fibronectin and, to a lesser extent, collagen; pretreatment of bacteria with chloramphenicol did not decrease this enhanced adherence to fibronectin and collagen, indicating that protein synthesis is not required for the latter effect. CONCLUSION: Taken together, these data suggest that serum components may serve (1) as host environmental stimuli to induce the production of ECM protein-binding adhesin(s), as previously seen with collagen adherence, and also (2) as activators of adherence, perhaps by forming bridges between ECM proteins and adhesins.