100 resultados para Isoniazida (INH)
Resumo:
The objective was to investigate the potential role of the oocyte in modulating proliferation and basal, FSH-induced and insulin-like growth factor (IGF)-induced secretion of inhibin A (inh A), activin A (act A), follistatin (FS), estradiol (E-2), and progesterone (P-4) by mural bovine granulosa cells. Cells from 4- to 6-mm follicles were cultured in serum-free medium containing insulin and androstenedione, and the effects of ovine FSH and IGF analogue (LR3-IGF-1) were tested alone and in the presence of denuded bovine oocytes (2, 8, or 20 per well). Medium was changed every 48 h, cultures were terminated after 144 h, and viable cell number was determined. Results are based on combined data from four independent cultures and are presented for the last time period only when responses were maximal. Both FSH and IGF increased (P < 0.001) secretion of inh A, act A, FS, E-2, and P-4 and raised cell number. In the absence of FSH or IGF, coculture with oocytes had no effect on any of the measured hormones, although cell number was increased up to 1.8-fold (P < 0.0001). Addition of oocytes to FSH-stimulated cells dose-dependently suppressed (P < 0.0001) inh A (6-fold maximum suppression), act A (5.5-fold), FS (3.6-fold), E-2 (4.6-fold), and P-4 (2.4-fold), with suppression increasing with FSH dose. Likewise, oocytes suppressed (P < 0.001) IGF-induced secretion of inh A, act A, FS, and E-2 (P < 0.05) but enhanced IGF-induced P-4 secretion (1.7-fold; P < 0.05). Given the similarity of these oocyte-mediated actions to those we observed previously following epidermal growth factor (EGF) treatment, we used immunocytochemistry to determine whether bovine oocytes express EGF or transforming growth factor (TGF) alpha. Intense staining with TGFalpha antibody (but not with EGF antibody) was detected in oocytes both before and after coculture. Experiments involving addition of TGFalpha to granulosa cells confirmed that the peptide mimicked the effects of oocytes on cell proliferation and on FSH- and IGF-induced hormone secretion. These experiments indicate that bovine oocytes secrete a factor(s) capable of modulating granulosa cell proliferation and responsiveness to FSH and IGF in terms of steroidogenesis and production of inhibin-related peptides, bovine oocytes express TGFalpha but not EGF, and TGFalpha is a prime candidate for mediating the actions of oocytes on bovine granulosa cells.
Resumo:
Spontaneous ring-opening polymerization of macrocyclic aromatic thioether ketones [-1,4-SC6H4CO-C6H4-](n) (n = 3 and 4), in which the thioether linkages are para to the ketone, occurs during rapid, transient heating to 480degreesC, to afford a soluble, semi-crystalline poly(thioether ketone) of high molar mass (eta(inh) > 1.0 dL . g(-1)). Corresponding macrocyclic ether ketone, and a macrocyclic thioether ether ketone in which the thioether linkage is para to the ether rather than to the ketone, show no evidence of polymerization under analogous conditions.
Resumo:
An NMR-based pharmacometabonomic approach was applied to investigate inter-animal variation in response to isoniazid (INH; 200 and 400 mg/kg) in male Sprague-Dawley rats, alongside complementary clinical chemistry and histopathological analysis. Marked inter-animal variability in central nervous system (CNS) toxicity was identified following administration of a high dose of INH, which enabled characterization of CNS responders and CNS non-responders. High-resolution post-dose urinary (1)H NMR spectra were modeled both by their xenobiotic and endogenous metabolic information sets, enabling simultaneous identification of the differential metabolic fate of INH and its associated endogenous metabolic consequences in CNS responders and CNS non-responders. A characteristic xenobiotic metabolic profile was observed for CNS responders, which revealed higher urinary levels of pyruvate isonicotinylhydrazone and β-glucosyl isonicotinylhydrazide and lower levels of acetylisoniazid compared to CNS non-responders. This suggested that the capacity for acetylation of INH was lower in CNS responders, leading to increased metabolism via conjugation with pyruvate and glucose. In addition, the endogenous metabolic profile of CNS responders revealed higher urinary levels of lactate and glucose, in comparison to CNS non-responders. Pharmacometabonomic analysis of the pre-dose (1)H NMR urinary spectra identified a metabolic signature that correlated with the development of INH-induced adverse CNS effects and may represent a means of predicting adverse events and acetylation capacity when challenged with high dose INH. Given the widespread use of INH for the treatment of tuberculosis, this pharmacometabonomic screening approach may have translational potential for patient stratification to minimize adverse events.
Resumo:
A tuberculose resistente a múltiplos fármacos (TB MDR) é definida como uma forma de tuberculose (TB) causada por Mycobacterium tuberculosis resistente a pelo menos isoniazida e rifampicina. A TB MDR é um problema mundial crescente resultante da não adesão dos pacientes ao tratamento e pelo gerenciamento ineficaz da doença pelos sistemas de saúde. Este estudo foi realizado com o objetivo de identificar os fatores de risco e os padrões de transmissão da TB MDR no Estado do Rio Grande do Sul, comparando os resultados obtidos com aqueles casos de TB suscetíveis aos fármacos. Durante os anos de 1999 e 2000 foram identificados 60 isolados MDR no Laboratório Central do RS (LACEN) e 202 isolados suscetíveis aos fármacos anti-TB. Estes isolados foram analisados utilizando a técnica de Polimorfismo do Tamanho dos Fragmentos de Restrição (RFLP) baseado no IS6110. Os dados clínicos e demográficos dos pacientes portadores destas linhagens também foram analisados. Nos isolados que apresentaram seis ou menos cópias de IS6110 foi realizada uma segunda técnica de genotipagem, o Spoligotyping. Os pacientes portadores de linhagens de M. tuberculosis com padrões idênticos foram considerados clusters. Foi observado que entre os 262 isolados, 94 (36%) pertenciam a 20 distintos clusters, e após a análise por Spoligotyping, 89 destes isolados (34%) permaneceram em cluster. Os isolados MDR não diferiram estatisticamente dos isolados suscetíveis na proporção de formação de cluster. Foi observada associação significante entre a ocorrência de TB MDR e tratamento prévio (p < 0,001) e falência no tratamento (p < 0,001). No entanto, os pacientes HIV positivos foram associados com TB suscetível (p = 0,024). Também foi identificado que pacientes não casados desenvolveram mais TB devida à transmissão recente (p < 0,005). A introdução da terapia supervisionada de curta duração (DOTS) no RS será importante, pois auxiliará na diminuição das taxas de falência e abandono de tratamento, evitando o desenvolvimento de novas linhagens MDR.
Resumo:
Tuberculosis is a serious disease, but curable in practically 100% of new cases, since complied the principles of modern chemotherapy. Isoniazid (ISN), Rifampicin (RIF), Pyrazinamide (PYR) and Chloride Ethambutol (ETA) are considered first line drugs in the treatment of tuberculosis, by combining the highest level of efficiency with acceptable degree of toxicity. Concerning USP 33 - NF28 (2010) the chromatography analysis to 3 of 4 drugs (ISN, PYR and RIF) last in average 15 minutes and 10 minutes more to obtain the 4th drug (ETA) using a column and mobile phase mixture different, becoming its industrial application unfavorable. Thus, many studies have being carried out to minimize this problem. An alternative would use the UFLC, which is based with the same principles of HPLC, however it uses stationary phases with particles smaller than 2 μm. Therefore, this study goals to develop and validate new analytical methods to determine simultaneously the drugs by HPLC/DAD and UFLC/DAD. For this, a analytical screening was carried out, which verified that is necessary a gradient of mobile phase system A (acetate buffer:methanol 94:6 v/v) and B (acetate buffer:acetonitrile 55:45 v/v). Furthermore, to the development and optimization of the method in HPLC and UFLC, with achievement of the values of system suitability into the criteria limits required for both techniques, the validations have began. Standard solutions and tablets test solutions were prepared and injected into HPLC and UFLC, containing 0.008 mg/mL ISN, 0.043 mg/mL PYR, 0.030 mg.mL-1 ETA and 0.016 mg/mL RIF. The validation of analytical methods for HPLC and UFLC was carried out with the determination of specificity/selectivity, analytical curve, linearity, precision, limits of detection and quantification, accuracy and robustness. The methods were adequate for determination of 4 drugs separately without interfered with the others. Precise, due to the fact of the methods demonstrated since with the days variation, besides the repeatability, the values were into the level required by the regular agency. Linear (R> 0,99), once the methods were capable to demonstrate results directly proportional to the concentration of the analyte sample, within of specified range. Accurate, once the methods were capable to present values of variation coefficient and recovery percentage into the required limits (98 to 102%). The methods showed LOD and LOQ very low showing the high sensitivity of the methods for the four drugs. The robustness of the methods were evaluate, facing the temperature and flow changes, where they showed robustness just with the preview conditions established of temperature and flow, abrupt changes may influence with the results of methods
Resumo:
Clays are natural materials that have great potential for use as excipients for solid dosage forms. Palygorskite is a type of clay that has hydrophilic properties as well as a large surface area, which could contribute to the dissolution of drugs. Thus, the present study aims to evaluate the use of palygorskite clay, from Piaui (Northeast region of Brazil), as a pharmaceutical excipient for solid dosage forms, using rifampicin and isoniazid as the model drugs. The former is a poorly soluble drug often associated with isoniazid for tuberculosis treatment. Palygorskite was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and specific surface area (BET). The rheological and technological properties of palygorskite were determined and compared to those of talc, magnesium stearate and Aersosil 200. Mixtures between drugs and palygorskite were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) combined with thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FT-IR), where the results were compared with those of the individual compounds. In addition, dissolution studies of solid dispersions and capsules containing the drugs, mixed with either palygorskite or a mixture of talc and magnesium stearate, were performed. The results showed that palygorskite has small particles with a high surface area. Its rheological characteristics were better than those of others commonly used glidants and lubricants. There was no interaction between palygorskite and the drugs (rifampicin and isoniazid). Among the dispersions studied, the mixture with palygorskite (5%) showed the highest drug dissolution when compared to other excipients. The dissolution of the rifampicin capsules containing palygosrkite was faster in higher concentrations. However, these differences were statistically different only in the first minutes of the dissolution experiment. The dissolution profile of isoniazid was also statistically different on the initial part of the experiment. The formulations prepared with isoniazid and palygorskite showed higher drug dissolution, but it was in descending order of concentration. According to these results, the palygorskite clay used in this study has great potential for application as an excipient for solid dosage forms
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Hepatotoxicity is the main concern during tuberculosis chemotherapy with the first-line drugs isoniazid (INH), rifampicin (RMP) and pyrazinamide (PYR). Since these hepatotoxic events have been associated with INH metabolites, the study aimed to measure the area under curve (AUC) parameter for INH and its metabolites acetylisoniazid (AcINH), hydrazine (Hz) and acetylhydrazine (AcHz), when groups of rats were pre-treated for 21 days with INH alone or in combination with RMP and/or PYR, in the following amounts per kg body weight: INH 100 mg; INH 100 mg + RMP 100 mg; INH 100 mg + PYR 350 mg; INH 100 mg + PYR 350 mg + RMP 100 mg. It was found that co-administration of RMP, PYR and RMP + PYR caused a significant decrease in the AUC for INH. Co-administration of PYR was the only treatment that caused a significant increase in the AUC for Hz and a decrease in the AUC for its acetylated product AcHz. The AUC for AcINH was not significantly altered in any experimental group. In conclusion, the increased metabolism of INH in all the drug combinations and the significantly higher production of Hz in the group INH + PYR might be linked with exacerbated hepatotoxic effects of these drug associations. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Tuberculosis chemotherapy involves combination of the drugs isoniazid (INH), rifampicin (RMP) and pyrazinamide (PYR) for a 6-month period. The present work investigated the influence of RMP and PYR on the pharmacokinetic parameters of INH when groups of rats were pre-treated for 21 days with INH alone or in combination with RMP and/or PYR, in the following amounts per kg body weight: INH 100 mg; INH 100 mg + RMP 100 mg; INH 100 mg + PYR 350 mg; INH 100 mg + PYR 350 mg + RMP 100 mg. It was found that the co-administration of PYR caused an increase in the INH distribution volume (V-d/F), half-life of elimination t(1)/2(beta)) and clearance (Cl-T/F), and a decrease in the area under curve 0 to 24 h (AUC). Co-administration of RMP caused an increase in the Cl-T/F and a decrease in the AUC. The combination INH + PYR + RMP caused an increase in the Cl-T/F and a decrease in the AUC. These significant pharmacokinetic interactions between the tuberculostatic drugs might be related to differences in the therapeutic and toxic effects. Copyright 0( 2007 John Wiley & Sons, Ltd.
Resumo:
OBJETIVO: Descrever as características clínico-demográficas de pacientes com tuberculose internados no Hospital Nestor Goulart Reis, de Américo Brasiliense (SP). MÉTODOS: Investigação epidemiológica através de um estudo observacional, retrospectivo, descritivo, conforme as fichas de internações de pacientes com tuberculose, ocorridas no período de 1994 a 2004. RESULTADOS: O número de pacientes com tuberculose durante o período foi de 1787: 117 (7%) eram do sexo feminino; 1670 (93%) eram do sexo masculino; e 1215 (68%) eram separados, solteiros ou viúvos. O grau de escolaridade mais freqüente foi o de 1º grau incompleto (74%). A faixa etária mais atingida (de 30 a 50 anos) totalizou 63%. O alcoolismo esteve associado em 61%. A profissão mais freqüente foi a de lavrador (25%) e 70% dos pacientes estavam desempregados. A forma clínica mais freqüente foi a pulmonar (92%). O índice de alta por indicação médica foi de 60%. em 34% dos casos foi utilizado um esquema terapêutico diferente do usual (rifampicina, isoniazida e pirazinamida). CONCLUSÕES: O perfil dos internos para tratamento da tuberculose neste hospital indicou que estes tinham necessidades diferenciadas: dificuldades para cuidar de si mesmos (os casos sociais) e necessidade de terapia diferenciada do esquema usual, o que justificou as internações. O Hospital cumpriu importante papel social no tratamento e orientação destes pacientes.
Resumo:
Resistance in Mycobacterium tuberculosis to isoniazid (INH) is caused by mutations in the catalase-peroxidase gene (katG) , and within the inhA promoter and/or in structural gene. A small percentage (~ 10%) of INH-resistant strains do not present mutations in both of these loci. Other genes have been associated with INH resistance including the gene encoding for NADH dehydrogenase (ndh) . Here we report the detection of two ndh locus mutations (CGT to TGT change in codon 13 and GTG to GCG change in codon 18) by analyzing 23 INH-resistant and in none of 13 susceptible isolates from Brazilian tuberculosis patients. We also detected two isolates without a mutation in ndh, or any of the other INH resistance-associated loci examined, suggesting the existence of additional, as yet to be described, INH resistance mechanisms.
Resumo:
An understanding of isoniazid (INH) drug resistance mechanism in Mycobacterium tuberculosis should provide significant insight for the development of newer anti-tubercular agents able to control INH-resistant tuberculosis (TB). The inhA-encoded 2-trans enoyl-acyl carrier protein reductase enzyme (InhA) has been shown through biochemical and genetic studies to be the primary target for INH. In agreement with these results, mutations in the inhA structural gene have been found in INH-resistant clinical isolates of M. tuberculosis, the causative agent of TB. In addition, the InhA mutants were shown to have higher dissociation constant values for NADH and lower values for the apparent first-order rate constant for INH inactivation as compared to wild-type InhA. Here, in trying to identify structural changes between wild-type and INH-resistant InhA enzymes, we have solved the crystal structures of wild-type and of S94A, I47T and I21V InhA proteins in complex with NADH to resolutions of, respectively, 2.3 angstrom, 2.2 angstrom, 2.0 angstrom, and 1.9 angstrom. The more prominent structural differences are located in, and appear to indirectly affect, the dinucleotide binding loop structure. Moreover, studies on pre-steady-state kinetics of NADH binding have been carried out. The results showed that the limiting rate constant values for NADH dissociation from the InhA-NADH binary complexes (k(off)) were eleven, five, and tenfold higher for, respectively, I21V, I47T and S94A INH-resistant mutants of InhA as compared to INH-sensitive wildtype InhA. Accordingly, these results are proposed to be able to account for the reduction in affinity for NADH for the INH-resistant InhA enzymes. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The resumption of tuberculosis led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. Isoniazid (INH), the most prescribed drug to treat TB, inhibits an NADH-dependent enoyl-acyl carrier protein reductase (InhA) that provides precursors of mycolic acids, which are components of the mycobacterial cell wall. InhA is the major target of the mode of action of isoniazid. INH is a pro-drug that needs activation to form the inhibitory INH-NAD adduct. Missense mutations in the inhA structural gene have been identified in clinical isolates of Mycobacterium tuberculosis resistant to INH. To understand the mechanism of resistance to INH, we have solved the structure of two InhA mutants (121V and S94A), identified in INH-resistant clinical isolates, and compare them to INH-sensitive WT InhA structure in complex with the INH-NAD adduct. We also solved the structure of unliganded INH-resistant S94A protein, which is the first report on apo form of InhA. The salient features of these structures are discussed and should provide structural information to improve our understanding of the mechanism of action of, and resistance to, INH in M. tuberculosis. The unliganded structure of InhA allows identification of conformational changes upon ligand binding and should help structure-based drug design of more potent antimycobacterial agents. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We investigated mutations in the genes katG, inhA (regulatory and structural regions), and kasA and the oxyR-ahpC intergenic region of 97 isoniazid (INH)-resistant and 60 INH-susceptible Mycobacterium tuberculosis isolates obtained in two states in Brazil: São Paulo and Parana. PCR-single-strand conformational polymorphism (PCR-SSCP) was evaluated for screening mutations in regions of prevalence, including codons 315 and 463 of katG, the regulatory region and codons 16 and 94 of inhA, kasA, and the oxyR-ahpC intergenic region. DNA sequencing of PCR amplicons was performed for all isolates with altered PCR-SSCP profiles. Mutations in katG were found in 83 (85.6%) of the 97 INH-resistant isolates, including mutations in codon 315 that occurred in 60 (61.9%) of the INH-resistant isolates and 23 previously unreported katG mutations. Mutations in the inhA promoter region occurred in 25 (25.8%) of the INH-resistant isolates; 6.2% of the isolates had inhA structural gene mutations, and 10.3% had mutations in the oxyR-ahpC intergenic region (one, nucleotide -48, previously unreported). Polymorphisms in the kasA gene occurred in both INH-resistant and INH-susceptible isolates. The most frequent polymorphism encoded a G(269)A substitution. Although KatG(315) substitutions are predominant, novel mutations also appear to be responsible for INH resistance in the two states in Brazil. Since ca. 90.7% of the INH-resistant isolates had mutations identified by SSCP electrophoresis, this method may be a useful genotypic screen for INH resistance.