708 resultados para Intermetallic precipitates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dislocations and precipitates in SI-GaAs single crystals are revealed by ultrasonic-aided Abrahams-Buiocchi etching (USAB), and the etch pits are observed and measured by metalloscope and scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS), respectively. The size of etch pit revealed by USAB etching is about 1 order of magnitude smaller than that revealed by molten KOH. The amount of arsenic atoms in the dislocation-dense zone is about 1% larger than that in an adjacent dislocation-free zone measured by EDS attached to SEM, which indicates that the excess arsenic atoms adjacent to the dislocation-dense zone are attracted to the dislocations and precipitate there due to the deformation energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaN epilayers grown on pre-nitridated (0001) sapphire substrates by metallorganic vapor phase epitaxy were investigated by wavelength dispersive X-ray spectroscopy and energy dispersive S-ray spectroscopy. Precipitates were observed to mainly consist of O impurity whose strengths were weaker than surrounding matrix. The precipitates were larger in size and distributed more sparsely and inhomogeneously in < 11-20 > directions of the epilayers grown on substrates pre-nitridated for longer periods. The larger precipitates often joined to cracks in the TEM specimens. The crack formation seems to be attributed to the compressive stress concentration at edge angles of the larger precipitates. Yellow luminescence of the epilayers was imaged by cathodoluminescence. The distribution similarity between the cathodoluminescence and the precipitates suggested that the precipitates were responsible for the yellow luminescence band. (C) 2000 Elsevier Science S.A, All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ageing behavior of an extruded Mg-7Y-4Gd-0.5Zn-0.4Zr alloy during ageing at 250 degrees C has been investigated. Two types of phases have been observed during the ageing process. One is a lamellar phase with a 14H long periodic stacking structure, the other is the beta' phase with an ellipsoidal morphology. The increased mechanical properties of the peak-aged alloy are mainly ascribed to the presence of both of these phases at peak hardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assisted by mechanical alloying and high-pressure technique, a new W3Mg intermetallic was formed. W3Mg amorphous mixture was obtained by mechanically alloying the pure metal powder mixtures at designated composition for 20 h. A new compound was found after the Subsequent high pressure and high temperature treatment. W3Mg intermetallic was identified as a tetragonal structure and the lattice parameter was a = 0.7880 nm, c = 0.7070 nm. The synthesis mechanism is also discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assisted by a mechanical alloying and high-pressure technique, a new W4Mg intermetallic was formed. W4Mg amorphous mixture was obtained by mechanically alloying the pure metal powder mixtures at designated composition for 20 h. A new compound was found after the subsequent high-pressure and high-temperature treatment. W4Mg intermetallic was identified as a cubic structure and the lattice parameter was a=0.4150 nm. The synthesis mechanism is also discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cubic LaNi2 Laves phase has been synthesized under high pressure. The effects of temperature and pressure on the stability of the Laves phase have been studied. High pressure also induces the phase transitions from intermetallic compounds La2Ni3 and LaNi2.286 to the Laves phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic properties of naturally layered intermetallic compound SmMn2Si2 with textured structure have been studied. There exist a ferromagnetic transition at 35 K and two antiferromagnetic transitions at 120 and 230 K. The antiferromagnetic state below 230 K exhibits different magnetoresistance, with a negative magnetoresistance of 3%-4% for current I applied perpendicular to the c axis and with a positive magnetoresistance effect of about 4%-6% for current I parallel to the c axis. The observed magnetoresistance is likely to be related to magnetovolume effects. In the ferromagnetic state, a positive magnetoresistance with a maximum increase of 22% under an applied field of 5 T is observed at 4 K, and both H perpendicular to I and H parallel to I configurations show positive magnetoresistance. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of Y(III) ions in molten chloride is known to be a one-step three electron reaction [1, 2, 3], but a voltammogram of YCl3 in molten LiCl-KCl-NaCl at a nickel electrode shows at least two reduction peaks of Y(III) ions, indicating the possibility of formation of Ni-Y intermetallic compounds. Using a galvanostatic electrolysis method, samples were prepared at several current densities at 450, 500, 600 and 700-degrees-C, respectively, and were identified with X-ray diffraction (XRD) and electron probe microanalysis (EPMA) methods. The results show that Ni2Y, Ni2Y3 and NiY can be produced by electrolysis and Ni2Y is found to be the predominant Ni-Y intermetallic compound under the experimental conditions. Nickel appears to diffuse in Ni2Y faster than yttrium, and the diffusion process is the rate determining step during Ni2Y formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

25%Al-Zn alloy coating performs better than hot dip galvanized coating and 55%Al-Zn-Si coating with regard to general seawater corrosion protection. This study deals with the interfacial intermetallic layer's growth, which affects considerably the corrosion resistance and mechanical properties of 25%Al-Zn alloy coatings, by means of three-factor quadratic regressive orthogonal experiments, The regression equation shows that the intermetallic layer thickness decreases rapidly with increasing content of Si added to the Zn-Al alloy bath, increases with rise in bath temperature and prolonging dip time. The most effective factor that determined the thickness of intermetallic layer was the amount of Si added to Zn-Al alloy bath, while the effect of bath temperature and dip time on the thickness of intermetallic layer were not very obvious.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective isoelectric whey protein precipitation and aggregation is carried out at laboratory scale in a standard configuration batch agitation vessel. Geometric scale-up of this operation is implemented on the basis of constant impeller power input per unit volume and subsequent clarification is achieved by high speed disc-stack centrifugation. Particle size and fractal geometry are important in achieving efficient separation while aggregates need to be strong enough to resist the more extreme levels of shear that are encountered during processing, for example through pumps, valves and at the centrifuge inlet zone. This study investigates how impeller agitation intensity and ageing time affect aggregate size, strength, fractal dimension and hindered settling rate at laboratory scale in order to determine conditions conducive for improved separation. Particle strength is measured by observing the effects of subjecting aggregates to moderate and high levels of process shear in a capillary rig and through a partially open ball-valve respectively. The protein precipitate yield is also investigated with respect to ageing time and impeller agitation intensity. A pilot scale study is undertaken to investigate scale-up and how agitation vessel shear affects centrifugal separation efficiency. Laboratory scale studies show that precipitates subject to higher impeller shear-rates during the addition of the precipitation agent are smaller but more compact than those subject to lower impeller agitation and are better able to resist turbulent breakage. They are thus more likely to provide a better feed for more efficient centrifugal separation. Protein precipitation yield improves significantly with ageing, and 50 minutes of ageing is required to obtain a 70 - 80% yield of α-lactalbumin. Geometric scale-up of the agitation vessel at constant power per unit volume results in aggregates of broadly similar size exhibiting similar trends but with some differences due to the absence of dynamic similarity due to longer circulation time and higher tip speed in the larger vessel. Disc stack centrifuge clarification efficiency curves show aggregates formed at higher shear-rates separate more efficiently, in accordance with laboratory scale projections. Exposure of aggregates to highly turbulent conditions, even for short exposure times, can lead to a large reduction in particle size. Thus, improving separation efficiencies can be achieved by the identification of high shear zones in a centrifugal process and the subsequent elimination or amelioration of such.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-intensity, high-resolution x-ray source at the European Synchrotron Radiation Facility (ESRF) has been used in x-ray diffraction (XRD) experiments to detect intermetallic compounds (IMCs) in lead-free solder bumps. The IMCs found in 95.5Sn3.8Ag0.7Cu solder bumps on Cu pads with electroplated-nickel immersion-gold (ENIG) surface finish are consistent with results based on traditional destructive methods. Moreover, after positive identification of the IMCs from the diffraction data, spatial distribution plots over the entire bump were obtained. These spatial distributions for selected intermetallic phases display the layer thickness and confirm the locations of the IMCs. For isothermally aged solder samples, results have shown that much thicker layers of IMCs have grown from the pad interface into the bulk of the solder. Additionally, the XRD technique has also been used in a temperature-resolved mode to observe the formation of IMCs, in situ, during the solidification of the solder joint. The results demonstrate that the XRD technique is very attractive as it allows for nondestructive investigations to be performed on expensive state-of-the-art electronic components, thereby allowing new, lead-free materials to be fully characterized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth behavior of intermetallic layer with or without adding 0.3 wt% Ni into the Sn-0.7Cu solder was studied during the wetting reaction on Cu-substrate and thereafter in solid-state aging condition. The Cu-solder reaction couple was prepared at 255, 275 and 295 °C for 10 s. The samples reacted at 255 °C were then isothermally aged for 2-14 days at 150 °C. The reaction species formed for the Sn-0.7Cu/Cu and Sn-0.7Cu-0.3Ni/Cu soldering systems were Cu6Sn5 and (CuNi)6Sn5, respectively. The thickness of the intermetallic compounds formed at the solder/Cu interfaces and also in the bulk of both solders increased with the increase of reaction temperature. It was found that Ni-containing Sn-0.7Cu solder exhibited lower growth of intermetallic layer during wetting and in the early stage of aging and eventually exceeded the intermetallic layer thickness of Sn-0.7Cu/Cu soldering system after 6 days of aging. As the aging time proceeds, a non-uniform intermetallic layer growth tendency was observed for the case of Sn-0.7Cu-0.3Ni solder. The growth behavior of intermetallic layer during aging for both solders followed the diffusion-controlled mechanism. The intermetallic layer growth rate constants for Sn-0.7Cu and Sn-0.7Cu-0.3Ni solders were calculated as 1.41 × 10-17 and 1.89 × 10-17 m2/s, respectively which indicated that adding 0.3 wt% Ni with Sn-0.7Cu solder contributed to the higher growth of intermetallic layer during aging. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trend towards miniaturization of electronic products leads to the need for very small sized solder joints. Therefore, there is a higher reliability risk that too large a fraction of solder joints will transform into Intermetallic Compounds (IMCs) at the solder interface. In this paper, fracture mechanics study of the IMC layer for SnPb and Pb-free solder joints was carried out using finite element numerical computer modelling method. It is assumed that only one crack is present in the IMC layer. Linear Elastic Fracture Mechanics (LEFM) approach is used for parametric study of the Stress Intensity Factors (SIF, KI and KII), at the predefined crack in the IMC layer of solder butt joint tensile sample. Contrary to intuition, it is revealed that a thicker IMC layer in fact increases the reliability of solder joint for a cracked IMC. Value of KI and KII are found to decrease with the location of the crack further away from the solder interfaces while other parameters are constant. Solder thickness and strain rate were also found to have a significant influence on the SIF values. It has been found that soft solder matrix generates non-uniform plastic deformation across the solder-IMC interface near the crack tip that is responsible to obtain higher KI and KII.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation and growth of intermetallic compound layer thickness is one of the important issues in search for reliable electronic and electrical connections. Intermetallic compounds (IMCs) are an essential part of solder joints. At low levels, they have a strengthening effect on the joint; but at higher levels, they tend to make solder joints more brittle. If the solder joint is subjected to long-standing exposure of high temperature, this could result in continuous growth of intermetallic compound layer. The brittle intermetallic compound layer formed in this way is very much prone to fracture and cold therefore lead to mechanical and electrical failure of the joint. Therefore, the primary aim of this study is to investigate the growth of intermetallic compound layer thickness subjected to five different reflow profiles. The study also looks at the effect of three different temperature cycles (with maximum cycle temperature of 25 0C, 40 0C and 60 0C) on intermetallic compound formation and their growth behaviour.. Two different Sn-Ag-Cu solder pastes (namely paste P1 and paste P2) which were different in flux medium, were used for the study. The result showed that the growth of intermetallic compound layer thickness was a function of ageing temperature. It was found that the rate of growth of intermetallic compound layer thickness of paste P1 was higher than paste P2 at the same temperature condition. This behaviour could be related to the differences in flux mediums of solder paste samples used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uranium-containing precipitates have been observed in a dolomitic gravel fill near the Department of Energy (DOE) S-3 Ponds former waste disposal site as a result of exposure to acidic (pH 3.4) groundwater contaminated with U (33 mg L-1), Al3+ (900 mg L-1), and NO3- (14?000 mg L-1). The U containing precipitates fluoresce a bright green under ultraviolet (UV) short-wave light which identify U-rich coatings on the gravel. Scanning electron microscopy (SEM) microprobe analysis show U concentration ranges from 1.6-19.8% (average of 7%) within the coatings with higher concentrations at the interface of the dolomite fragments. X-ray absorption near edge structure spectroscopy (XANES) indicate that the U is hexavalent and extended X-ray absorption fine structure spectroscopy (EXAFS) shows that the uranyl is coordinated by carbonate. The exact nature of the uranyl carbonates are difficult to determine, but some are best described by a split K+-like shell similar to grimselite [K4Na(UO2)(CO3)3·H2O] and other regions are better described by a single Ca2+-like shell similar to liebigite [Ca2(UO2)(CO3)3·11(H2O)] or andersonite [Na2CaUO2(CO3)3 · 6H2O]. The U precipitates are found in the form of white to light yellow cracked-formations as coatings on the dolomite gravel and as detached individual precipitates, and are associated with amorphous basalumnite [Al4(SO4)(OH)10·4H2O].