970 resultados para Integral Transform


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to obtain certain characterizations for the image of a Sobolev space on the Heisenberg group under the heat kernel transform. We give three types of characterizations for the image of a Sobolev space of positive order H-m (H-n), m is an element of N-n, under the heat kernel transform on H-n, using direct sum and direct integral of Bergmann spaces and certain unitary representations of H-n which can be realized on the Hilbert space of Hilbert-Schmidt operators on L-2 (R-n). We also show that the image of Sobolev space of negative order H-s (H-n), s(> 0) is an element of R is a direct sum of two weighted Bergman spaces. Finally, we try to obtain some pointwise estimates for the functions in the image of Schwartz class on H-n under the heat kernel transform. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, by use of the boundary integral equation method and the techniques of Green basic solution and singularity analysis, the dynamic problem of antiplane is investigated. The problem is reduced to solving a Cauchy singular integral equation in Laplace transform space. This equation is strictly proved to be equivalent to the dual integral equations obtained by Sih [Mechanics of Fracture, Vol. 4. Noordhoff, Leyden (1977)]. On this basis, the dynamic influence between two parallel cracks is also investigated. By use of the high precision numerical method for the singular integral equation and Laplace numerical inversion, the dynamic stress intensity factors of several typical problems are calculated in this paper. The related numerical results are compared to be consistent with those of Sih. It shows that the method of this paper is successful and can be used to solve more complicated problems. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subspace learning is the process of finding a proper feature subspace and then projecting high-dimensional data onto the learned low-dimensional subspace. The projection operation requires many floating-point multiplications and additions, which makes the projection process computationally expensive. To tackle this problem, this paper proposes two simple-but-effective fast subspace learning and image projection methods, fast Haar transform (FHT) based principal component analysis and FHT based spectral regression discriminant analysis. The advantages of these two methods result from employing both the FHT for subspace learning and the integral vector for feature extraction. Experimental results on three face databases demonstrated their effectiveness and efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel hybrid data-driven approach is developed for forecasting power system parameters with the goal of increasing the efficiency of short-term forecasting studies for non-stationary time-series. The proposed approach is based on mode decomposition and a feature analysis of initial retrospective data using the Hilbert-Huang transform and machine learning algorithms. The random forests and gradient boosting trees learning techniques were examined. The decision tree techniques were used to rank the importance of variables employed in the forecasting models. The Mean Decrease Gini index is employed as an impurity function. The resulting hybrid forecasting models employ the radial basis function neural network and support vector regression. A part from introduction and references the paper is organized as follows. The second section presents the background and the review of several approaches for short-term forecasting of power system parameters. In the third section a hybrid machine learningbased algorithm using Hilbert-Huang transform is developed for short-term forecasting of power system parameters. Fourth section describes the decision tree learning algorithms used for the issue of variables importance. Finally in section six the experimental results in the following electric power problems are presented: active power flow forecasting, electricity price forecasting and for the wind speed and direction forecasting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a definition of the Hilbert transform operating on Colombeau's temperated generalized functions is given. Similar results to some theorems that hold in the classical theory, or in certain subspaces of Schwartz distributions, have been obtained in this framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se propone estudiar la problemática de los pobladores del desierto del noreste de Mendoza, dedicados a la cría de caprinos, en el afán por interpretar y transformar la realidad de estos pobladores. Incluye metodologías interdisciplinarias de proyectos referidos a: profundización del conocimiento de la problemática socio-ambiental y de las necesidades y aspiraciones de los pobladores, cuantificación de la oferta forrajera y su incremento, posibilidades de revegetación con gramíneas peretines nativas, uso adecuado de los bosques de algarrobo, producción caprina diversificada, implementación de huertas familiares y la producción local de energia eléctrica, a partir de energía solar. Los pobladores viven en puestos aislados y por lo general carecen de energía eléctrica, agua potable y tecnologías apropiadas. Existen problemas de salud con características propias, entre ellos patologías orales que son evaluadas y atendidas para lograr la sustentabilidad de la salud bucal. Se contempla una participación interactiva, en la cual la comunidad comparte el análisis, las decisiones y el desarrollo de las acciones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fractional Fourier transform (FrFT) is used for the solution of the diffraction integral in optics. A scanning approach is proposed for finding the optimal FrFT order. In this way, the process of diffraction computing is speeded up. The basic algorithm and the intermediate results at each stage are demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: Primary 33E20, 44A10; Secondary 33C10, 33C20, 44A20

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 33C05, 33C10, 33C20, 33C60, 33E12, 33E20, 40A30

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 44A05, 44A35

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.