959 resultados para Infinite dimensional strategy spaces
Resumo:
We prove that for any finite ultrametric space M and any infinite-dimensional Banach space B there exists an isometric embedding of M into B.
Resumo:
We construct a bounded function $H : l_2\times l_2 \to R$ with continuous Frechet derivative such that for any $q_0\in l_2$ the Cauchy problem $\dot p= - {\partial H\over\partial q}$, $\dot q={\partial H\over\partial p}$, $p(0) = 0$, q(0) = q_0$ has no solutions in any neighborhood of zero in R.
Resumo:
An example of a sigma -compact infinite-dimensional pre-Hilbert space H is constructed such that any continuous linear operator T: H --> H is of the form T = lambdaI + F for some lambda is an element of R and for a finite-dimensional continuous linear operator F. A class of simple examples of pre-Hilbert spaces nonisomorphic to their closed hyperplanes is given. A sigma -compact pre-Hilbert space H isomorphic to H x R x R and nonisomorphic to H x R is also constructed.
Resumo:
Food webs represent trophic (feeding) interactions in ecosystems. Since the late 1970s, it has been recognized that food-webs have a surprisingly close relationship to interval graphs. One interpretation of food-web intervality is that trophic niche space is low-dimensional, meaning that the trophic character of a species can be expressed by a single or at most a few quantitative traits. In a companion paper we demonstrated, by simulating a minimal food-web model, that food webs are also expected to be interval when niche-space is high-dimensional. Here we characterize the fundamental mechanisms underlying this phenomenon by proving a set of rigorous conditions for food-web intervality in high-dimensional niche spaces. Our results apply to a large class of food-web models, including the special case previously studied numerically.
Resumo:
Operator spaces of Hilbertian JC∗ -triples E are considered in the light of the universal ternary ring of operators (TRO) introduced in recent work. For these operator spaces, it is shown that their triple envelope (in the sense of Hamana) is the TRO they generate, that a complete isometry between any two of them is always the restriction of a TRO isomorphism and that distinct operator space structures on a fixed E are never completely isometric. In the infinite-dimensional cases, operator space structure is shown to be characterized by severe and definite restrictions upon finite-dimensional subspaces. Injective envelopes are explicitly computed.
Resumo:
Let E be an infinite dimensional complex Banach space. We prove the existence of an infinitely generated algebra, an infinite dimensional closed subspace and a dense subspace of entire functions on E whose non-zero elements are functions of unbounded type. We also show that the τδ topology on the space of all holomorphic functions cannot be obtained as a countable inductive limit of Fr´echet spaces. RESUMEN. Sea E un espacio de Banach complejo de dimensión infinita y sea H(E) el espacio de funciones holomorfas definidas en E. En el artículo se demuestra la existencia de un álgebra infinitamente generada en H(E), un subespacio vectorial en H(E) cerrado de dimensión infinita y un subespacio denso en H(E) cuyos elementos no nulos son funciones de tipo no acotado. También se demuestra que el espacio de funciones holomorfas con la topología ? no es un límite inductivo numberable de espacios de Fréchet.
Resumo:
Studiamo l'operatore di Ornstein-Uhlenbeck e il semigruppo di Ornstein-Uhlenbeck in un sottoinsieme aperto convesso $\Omega$ di uno spazio di Banach separabile $X$ dotato di una misura Gaussiana centrata non degnere $\gamma$. In particolare dimostriamo la disuguaglianza di Sobolev logaritmica e la disuguaglianza di Poincaré, e grazie a queste disuguaglianze deduciamo le proprietà spettrali dell'operatore di Ornstein-Uhlenbeck. Inoltre studiamo l'equazione ellittica $\lambdau+L^{\Omega}u=f$ in $\Omega$, dove $L^\Omega$ è l'operatore di Ornstein-Uhlenbeck. Dimostriamo che per $\lambda>0$ e $f\in L^2(\Omega,\gamma)$ la soluzione debole $u$ appartiene allo spazio di Sobolev $W^{2,2}(\Omega,\gamma)$. Inoltre dimostriamo che $u$ soddisfa la condizione di Neumann nel senso di tracce al bordo di $\Omega$. Questo viene fatto finita approssimazione dimensionale.
Resumo:
Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.
Resumo:
In this paper we consider a primal-dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces, therefore our results are algebraic duality theorems. As an application, we consider transferable utility cooperative games with arbitrarily many players.
Resumo:
We say that a (countably dimensional) topological vector space X is orbital if there is T∈L(X) and a vector x∈X such that X is the linear span of the orbit {Tnx:n=0,1,…}. We say that X is strongly orbital if, additionally, x can be chosen to be a hypercyclic vector for T. Of course, X can be orbital only if the algebraic dimension of X is finite or infinite countable. We characterize orbital and strongly orbital metrizable locally convex spaces. We also show that every countably dimensional metrizable locally convex space X does not have the invariant subset property. That is, there is T∈L(X) such that every non-zero x∈X is a hypercyclic vector for T. Finally, assuming the Continuum Hypothesis, we construct a complete strongly orbital locally convex space.
As a byproduct of our constructions, we determine the number of isomorphism classes in the set of dense countably dimensional subspaces of any given separable infinite dimensional Fréchet space X. For instance, in X=ℓ2×ω, there are exactly 3 pairwise non-isomorphic (as topological vector spaces) dense countably dimensional subspaces.
Resumo:
We investigate the effect of a prescribed tangential velocity on the drag force on a circular cylinder in a spanwise uniform cross flow. Using a combination of theoretical and numerical techniques we make an attempt at determining the optimal tangential velocity profiles which will reduce the drag force acting on the cylindrical body while minimizing the net power consumption characterized through a non-dimensional power loss coefficient (C-PL). A striking conclusion of our analysis is that the tangential velocity associated with the potential flow, which completely suppresses the drag force, is not optimal for both small and large, but finite Reynolds number. When inertial effects are negligible (R e << 1), theoretical analysis based on two-dimensional Oseen equations gives us the optimal tangential velocity profile which leads to energetically efficient drag reduction. Furthermore, in the limit of zero Reynolds number (Re -> 0), minimum power loss is achieved for a tangential velocity profile corresponding to a shear-free perfect slip boundary. At finite Re, results from numerical simulations indicate that perfect slip is not optimum and a further reduction in drag can be achieved for reduced power consumption. A gradual increase in the strength of a tangential velocity which involves only the first reflectionally symmetric mode leads to a monotonic reduction in drag and eventual thrust production. Simulations reveal the existence of an optimal strength for which the power consumption attains a minima. At a Reynolds number of 100, minimum value of the power loss coefficient (C-PL = 0.37) is obtained when the maximum in tangential surface velocity is about one and a half times the free stream uniform velocity corresponding to a percentage drag reduction of approximately 77 %; C-PL = 0.42 and 0.50 for perfect slip and potential flow cases, respectively. Our results suggest that potential flow tangential velocity enables energetically efficient propulsion at all Reynolds numbers but optimal drag reduction only for Re -> infinity. The two-dimensional strategy of reducing drag while minimizing net power consumption is shown to be effective in three dimensions via numerical simulation of flow past an infinite circular cylinder at a Reynolds number of 300. Finally a strategy of reducing drag, suitable for practical implementation and amenable to experimental testing, through piecewise constant tangential velocities distributed along the cylinder periphery is proposed and analysed.
Resumo:
We address the question, does a system A being entangled with another system B, put any constraints on the Heisenberg uncertainty relation (or the Schrodinger-Robertson inequality)? We find that the equality of the uncertainty relation cannot be reached for any two noncommuting observables, for finite dimensional Hilbert spaces if the Schmidt rank of the entangled state is maximal. One consequence is that the lower bound of the uncertainty relation can never be attained for any two observables for qubits, if the state is entangled. For infinite-dimensional Hilbert space too, we show that there is a class of physically interesting entangled states for which no two noncommuting observables can attain the minimum uncertainty equality.
Resumo:
We address the question, does a system A being entangled with another system B, put any constraints on the Heisenberg uncertainty relation (or the Schrodinger-Robertson inequality)? We find that the equality of the uncertainty relation cannot be reached for any two noncommuting observables, for finite dimensional Hilbert spaces if the Schmidt rank of the entangled state is maximal. One consequence is that the lower bound of the uncertainty relation can never be attained for any two observables for qubits, if the state is entangled. For infinite-dimensional Hilbert space too, we show that there is a class of physically interesting entangled states for which no two noncommuting observables can attain the minimum uncertainty equality.
Resumo:
We propose a scheme to physically interface superconducting nanocircuits and quantum optics. We address the transfer of quantum information between systems having different physical natures and defined in Hilbert spaces of different dimensions. In particular, we investigate the transfer of the entanglement initially in a nonclassical state of an infinite dimensional system to a pair of superconducting charge qubits. This setup is able to drive an initially separable state of the qubits into an almost pure, highly entangled state suitable for quantum information processing.
Resumo:
A bounded linear operator $T$ on a Banach space $X$ is called frequently hypercyclic if there exists $x\in X$ such that the lower density of the set $\{n\in\N:T^nx\in U\}$ is positive for any non-empty open subset $U$ of $X$. Bayart and Grivaux have raised a question whether there is a frequently hypercyclic operator on any separable infinite dimensional Banach space. We prove that the spectrum of a frequently hypercyclic operator has no isolated points. It follows that there are no frequently hypercyclic operators on all complex and on some real hereditarily indecomposable Banach spaces, which provides a negative answer to the above question.