790 resultados para Industrial heritage and recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subspace learning is the process of finding a proper feature subspace and then projecting high-dimensional data onto the learned low-dimensional subspace. The projection operation requires many floating-point multiplications and additions, which makes the projection process computationally expensive. To tackle this problem, this paper proposes two simple-but-effective fast subspace learning and image projection methods, fast Haar transform (FHT) based principal component analysis and FHT based spectral regression discriminant analysis. The advantages of these two methods result from employing both the FHT for subspace learning and the integral vector for feature extraction. Experimental results on three face databases demonstrated their effectiveness and efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address mid-level vision for the recognition of non-rigid objects. We align model and image using frame curves - which are object or "figure/ground" skeletons. Frame curves are computed, without discontinuities, using Curved Inertia Frames, a provably global scheme implemented on the Connection Machine, based on: non-cartisean networks; a definition of curved axis of inertia; and a ridge detector. I present evidence against frame alignment in human perception. This suggests: frame curves have a role in figure/ground segregation and in fuzzy boundaries; their outside/near/top/ incoming regions are more salient; and that perception begins by setting a reference frame (prior to early vision), and proceeds by processing convex structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A framework for the simultaneous localization and recognition of dynamic hand gestures is proposed. At the core of this framework is a dynamic space-time warping (DSTW) algorithm, that aligns a pair of query and model gestures in both space and time. For every frame of the query sequence, feature detectors generate multiple hand region candidates. Dynamic programming is then used to compute both a global matching cost, which is used to recognize the query gesture, and a warping path, which aligns the query and model sequences in time, and also finds the best hand candidate region in every query frame. The proposed framework includes translation invariant recognition of gestures, a desirable property for many HCI systems. The performance of the approach is evaluated on a dataset of hand signed digits gestured by people wearing short sleeve shirts, in front of a background containing other non-hand skin-colored objects. The algorithm simultaneously localizes the gesturing hand and recognizes the hand-signed digit. Although DSTW is illustrated in a gesture recognition setting, the proposed algorithm is a general method for matching time series, that allows for multiple candidate feature vectors to be extracted at each time step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modal matching is a new method for establishing correspondences and computing canonical descriptions. The method is based on the idea of describing objects in terms of generalized symmetries, as defined by each object's eigenmodes. The resulting modal description is used for object recognition and categorization, where shape similarities are expressed as the amounts of modal deformation energy needed to align the two objects. In general, modes provide a global-to-local ordering of shape deformation and thus allow for selecting which types of deformations are used in object alignment and comparison. In contrast to previous techniques, which required correspondence to be computed with an initial or prototype shape, modal matching utilizes a new type of finite element formulation that allows for an object's eigenmodes to be computed directly from available image information. This improved formulation provides greater generality and accuracy, and is applicable to data of any dimensionality. Correspondence results with 2-D contour and point feature data are shown, and recognition experiments with 2-D images of hand tools and airplanes are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined 2D, 3D approach is presented that allows for robust tracking of moving people and recognition of actions. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object that are then used as input to action recognition modules. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture-of-Gaussians classifier. The system was tested in recognizing various dynamic human outdoor activities: running, walking, roller blading, and cycling. Experiments with real and synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anterior inferotemporal cortex (ITa) plays a key role in visual object recognition. Recognition is tolerant to object position, size, and view changes, yet recent neurophysiological data show ITa cells with high object selectivity often have low position tolerance, and vice versa. A neural model learns to simulate both this tradeoff and ITa responses to image morphs using large-scale and small-scale IT cells whose population properties may support invariant recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article introduces ART 2-A, an efficient algorithm that emulates the self-organizing pattern recognition and hypothesis testing properties of the ART 2 neural network architecture, but at a speed two to three orders of magnitude faster. Analysis and simulations show how the ART 2-A systems correspond to ART 2 dynamics at both the fast-learn limit and at intermediate learning rates. Intermediate learning rates permit fast commitment of category nodes but slow recoding, analogous to properties of word frequency effects, encoding specificity effects, and episodic memory. Better noise tolerance is hereby achieved without a loss of learning stability. The ART 2 and ART 2-A systems are contrasted with the leader algorithm. The speed of ART 2-A makes practical the use of ART 2 modules in large-scale neural computation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four experiments examined participants' ability to produce surface characteristics of sentences using an on-line story reading task. Participants read a series of stories in which either all, or the majority of sentences were written in the same "style," or surface form. Twice per story, participants were asked to fill in a blank consistent with the story. For sentences that contained three stylistic regularities, participants imitated either all three characteristics (Experiment 2) or two of the three characteristics (Experiment 1), depending on the proportion of in-style sentences. Participants demonstrated a recognition bias for the read style in an unannounced recognition task. When participants read stories in which the two styles were the dative/double object alternation, participants demonstrated a syntactic priming effect in the cloze task, but no consistent recognition bias in a later recognition test (Experiments 3 and 4).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m3 and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere.

Relevância:

100.00% 100.00%

Publicador: