130 resultados para Inductance
Resumo:
报道了一种重量轻、功耗低、适合于小飞机防撞系统应用的小型激光测距仪。系统基于脉冲激光测距原理,采用905nm半导体脉冲激光器、电感升压式偏置高压电源和可编程逻辑器件(PLD),研制出重量不大于100g,功耗不大于625mW,测量范围100m,盲区3.0m,分辨率±1m的机载小型激光测距仪。实验测试结果表明,其各项技术性能指标符合无人驾驶小飞机防撞系统的应用要求。
Resumo:
A large portion of the noise in the light output of a laser oscillator is associated with the noise in the laser discharge. The effect of the discharge noise on the laser output has been studied. The discharge noise has been explained through an ac equivalent circuit of the laser discharge tube.
The discharge noise corresponds to time-varying spatial fluctuations in the electron density, the inverted population density and the dielectric permittivity of the laser medium from their equilibrium values. These fluctuations cause a shift in the resonant frequencies of the laser cavity. When the fluctuation in the dielectric permittivity of the laser medium is a longitudinally traveling wave (corresponding to the case in which moving striations exist in the positive column of the laser discharge), the laser output is frequency modulated.
The discharge noise has been analyzed by representing the laser discharge by an equivalent circuit. An appropriate ac equivalent circuit of a laser discharge tube has been obtained by considering the frequency spectrum of the current response of the discharge tube to an ac voltage modulation. It consist of a series ρLC circuit, which represents the discharge region, in parallel with a capacitance C', which comes mainly from the stray wiring. The equivalent inductance and capacitance of the discharge region have been calculated from the values of the resonant frequencies measured on discharge currents, gas pressures and lengths of the positive column. The experimental data provide for a set of typical values and dependencies on the discharge parameters for the equivalent inductance and capacitance of a discharge under laser operating conditions. It has been concluded from the experimental data that the equivalent inductance originates mainly from the positive column while the equivalent capacitance is due to the discharge region other than the positive column.
The ac equivalent circuit of the laser discharge has been shown analytically and experimentally to be applicable to analyzing the internal discharge noise. Experimental measurements have been made on the frequency of moving striations in a laser discharge. Its experimental dependence on the discharge current agrees very well with the expected dependence obtained from an analysis of the circuit and the experimental data on the equivalent circuit elements. The agreement confirms the validity of representing a laser discharge tube by its ac equivalent circuit in analyzing the striation phenomenon and other low frequency noises. Data have also been obtained for the variation of the striation frequency with an externally-applied longitudinal magnetic field and the increase in frequency has been attributed to a decrease in the equivalent inductance of the laser discharge.
Resumo:
The aim of this research study has been to design a gain scheduling (GS) digital controller in order to control the voltage of an islanded microgrid in the presence of fast varying loads (FVLs), and to compare it to a robust controller. The inverter which feeds the microgrid is connected to it through an inductance-capacitor-inductance (LCL) filter. The oscillatory and nonlinear behaviour of the plant is analyzed in the whole operating zone. Afterwards, the design of the controllers which contain two loops in cascade are described. The first loop concerns the current control, while the second is linked to the voltage regulation. Two controllers, one defined as Robust and another one as GS controller, are designed for the two loops, emphasizing in their robustness and their ability to damp the oscillatory plant behaviour. To finish, some simulations are carried out to study and compare the two kinds of controllers in different operating points. The results show that both controllers damp the oscillatory behaviour of the plant in closed loop (CL), and that the GS controller ensures a better rejection of current disturbances from FVLs.
Resumo:
One of the main problems of fusion energy is to achieve longer pulse duration by avoiding the premature reaction decay due to plasma instabilities. The control of the plasma inductance arises as an essential tool for the successful operation of tokamak fusion reactors in order to overcome stability issues as well as the new challenges specific to advanced scenarios operation. In this sense, given that advanced tokamaks will suffer from limited power available from noninductive current drive actuators, the transformer primary coil could assist in reducing the power requirements of the noninductive current drive sources needed for current profile control. Therefore, tokamak operation may benefit from advanced control laws beyond the traditionally used PID schemes by reducing instabilities while guaranteeing the tokamak integrity. In this paper, a novel model predictive control (MPC) scheme has been developed and successfully employed to optimize both current and internal inductance of the plasma, which influences the L-H transition timing, the density peaking, and pedestal pressure. Results show that the internal inductance and current profiles can be adequately controlled while maintaining the minimal control action required in tokamak operation.
Resumo:
A closed-loop control technique based on monitoring phase current risetime for switched reluctance (SR) motors without direct rotor-position sensors has been studied and implemented successfully. In this technique the variation in incremental phase inductance in a SR motor is used to detect rotor position. A control circuit for current-waveform-based rotor position detection has been implemented using hard-wire digital circuits. Torque-speed and system-efficiency characteristics resulting from the application of the method to a 4-kW, four-phase SR motor with an IGBT drive are presented.
Resumo:
AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors are currently investigating the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in coils made from YBCO superconductors. In this paper, a 2D finite element model based on the H formulation is introduced. The model is then used to calculate the transport AC loss using both a bulk approximation and modeling the individual turns in a racetrack-shaped coil. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's superconducting permanent magnet synchronous motor design. The transport AC loss of a stator coil is measured using an electrical method based on inductive compensation using a variable mutual inductance. The simulated results are compared with the experimental results, verifying the validity of the model, and ways to improve the accuracy of the model are discussed. © 2010 IEEE.
Resumo:
This paper presents an analytical modelling approach for the Brushless Doubly-Fed Machine (BDFM) taking iron saturation into account. A generalised coupled-circuit model is developed which considers stator and rotor teeth saturation effects. A method of calculating the machine inductance parameters is presented which can be implemented in time-stepping simulations. The model has been implemented in MATLAB/Simulink and verified by Finite Element analysis and experimental tests. The tests are carried out on a 180 frame size BDFM. Flux search coils have been utilised to measure airgap and teeth flux densities. © 2010 IEEE.
Resumo:
The Brushless Double-Fed Machine (BDFM) is a type of variable speed generator or drive. Using theoretical analysis of simple BDFM rotors this paper establishes trends in how rotor structures determine the rotor's equivalent circuit resistance, leakage inductance and turns ratio. The variation in measured parameters of five prototype rotors is then analysed in light of the trends found. Both the theory and experimental results suggest a significant performance advantage in using cage+loops type rotors as opposed to the simple nested loop type more usually employed.
Resumo:
Application of High Temperature Superconducting (HTS) has been increasingly popular since the new superconducting materials were discovered. This paper presents a new high-precision digital lock-in measurement technique which is used for measuring critical current and AC loss of the 2nd Generation HTS tape. Using a lock-in amplifier and nano-voltage meter, we can resolve signals at nano-volt level, while using a specially designed compensation coil we can cancel out inductive by adjusting the coil inductance. Furthermore, a finer correction for the inductive component can be achieved by adjusting the reference phase of the lock-in amplifier. The critical current and AC loss measurement algorithms and hardware layout are described and analyzed, and results for both numerical and experimental data under varieties of frequencies are presented. © 2008 SICE.
Resumo:
A sensorless scheme is presented for a two-phase permanent-magnet linear machine targeted for use in marine wave-power generation. This is a field where system reliability is a key concern. The scheme is able to extract the effective inductance and back-emf of the machine's phases simultaneously from measurements of the current ripple present on the power electronic converter. These measurements can then be used to estimate position. An enhancement to the scheme in the presence of spatially-varying mutual inductance between phases allows more accurate and reliable tracking from indutance-based measurements than would otherwise be expected. This scheme is able to operate at any speed including, critically, when stationary. Experimental results show promise for the scheme, although some work to reduce the level of noise would be desirable. © 2013 IEEE.
Resumo:
Cascode circuits are useful for driving normally-on wide-bandgap devices, but the switching process must be properly understood to optimise their design. Little detailed consideration has previously been given to this. This paper proposes an idealised mathematical description of the cascode switching process, which is used to show that the stray inductance between the two devices plays a critical role in switching. This idealised model is used to propose methods for optimising cascode performance in different applications. © 2013 IEEE.
Resumo:
A SPICE simulation model of a novel cascode switch that combines a high voltage normally-on silicon carbide (SiC) junction field effect transistor (JFET) with a low voltage enhancement-mode gallium nitride field effect transistor (eGaN FET) has been developed, with the aim of optimising cascode switching performance. The effect of gate resistance on stability and switching losses is investigated and optimum values chosen. The effects of stray inductance on cascode switching performance are considered and the benefits of low inductance packaging discussed. The use of a positive JFET gate bias in a cascode switch is shown to reduce switching losses as well as reducing on-state losses. The findings of the simulation are used to produce a list of priorities for the design and layout of wide-bandgap cascode switches, relevant to both SiC and GaN high voltage devices. © 2013 IEEE.
Resumo:
This paper studies the converter rating requirement of a Brushless Doubly-Fed Induction Generator for wind turbine applications by considering practical constraints such as generator torque-speed requirement, reactive power management and grid low-voltage ride-through (LVRT). Practical data have been used to obtain a realistic system model of a Brushless DFIG wind turbine using steady-state and dynamic models. A converter rating optimization is performed based on the given constraints. The converter current and voltage requirements are examined and the resulting inverter rating is compared to optimization algorithm results. In addition, the effects of rotor leakage inductance on LVRT performance and hence converter rating is investigated.
Resumo:
We report a resonant tunneling diode (RTD) small signal equivalent circuit model consisting of quantum capacitance and quantum inductance. The model is verified through the actual InAs/In0.53Ga0.47As/AlAs RTD fabricated on an InP substrate. Model parameters are extracted by fitting the equivalent circuit model with ac measurement data in three different regions of RTD current-voltage (I-V) characteristics. The electron lifetime, representing the average time that the carriers remain in the quasibound states during the tunneling process, is also calculated to be 2.09 ps.
Resumo:
We study the essential roles of self and mutual inductances in superconducting charge qubits and propose a scheme to couple charge qubits by means of mutual inductance. We also show that the Hamiltonians can be exactly formulated in compact forms in the spin-1/2 representation for both single- and double-qubit structures.