962 resultados para Incremental learning
Resumo:
This article situates the development of the Threshold Learning Outcomes for law in relation to broader national and international trends in legal education and higher education regulation. It also addresses the significance of recent changes to the Australian higher education regulatory landscape catalysed by the current Government's commitment to reducing regulation and red tape for the sector.
Resumo:
A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.
Resumo:
The present work presents a new method for activity extraction and reporting from video based on the aggregation of fuzzy relations. Trajectory clustering is first employed mainly to discover the points of entry and exit of mobiles appearing in the scene. In a second step, proximity relations between resulting clusters of detected mobiles and contextual elements from the scene are modeled employing fuzzy relations. These can then be aggregated employing typical soft-computing algebra. A clustering algorithm based on the transitive closure calculation of the fuzzy relations allows building the structure of the scene and characterises the ongoing different activities of the scene. Discovered activity zones can be reported as activity maps with different granularities thanks to the analysis of the transitive closure matrix. Taking advantage of the soft relation properties, activity zones and related activities can be labeled in a more human-like language. We present results obtained on real videos corresponding to apron monitoring in the Toulouse airport in France.
Resumo:
In this paper, the presynaptic rule, a classical rule for hebbian learning, is revisited. It is shown that the presynaptic rule exhibits relevant synaptic properties like synaptic directionality, and LTP metaplasticity (long-term potentiation threshold metaplasticity). With slight modifications, the presynaptic model also exhibits metaplasticity of the long-term depression threshold, being also consistent with Artola, Brocher and Singer’s (ABS) influential model. Two asymptotically equivalent versions of the presynaptic rule were adopted for this analysis: the first one uses an incremental equation while the second, conditional probabilities. Despite their simplicity, both types of presynaptic rules exhibit sophisticated biological properties, specially the probabilistic version
Resumo:
Probabilistic graphical models are a huge research field in artificial intelligence nowadays. The scope of this work is the study of directed graphical models for the representation of discrete distributions. Two of the main research topics related to this area focus on performing inference over graphical models and on learning graphical models from data. Traditionally, the inference process and the learning process have been treated separately, but given that the learned models structure marks the inference complexity, this kind of strategies will sometimes produce very inefficient models. With the purpose of learning thinner models, in this master thesis we propose a new model for the representation of network polynomials, which we call polynomial trees. Polynomial trees are a complementary representation for Bayesian networks that allows an efficient evaluation of the inference complexity and provides a framework for exact inference. We also propose a set of methods for the incremental compilation of polynomial trees and an algorithm for learning polynomial trees from data using a greedy score+search method that includes the inference complexity as a penalization in the scoring function.
Resumo:
In this paper we present a new approach to ontology learning. Its basis lies in a dynamic and iterative view of knowledge acquisition for ontologies. The Abraxas approach is founded on three resources, a set of texts, a set of learning patterns and a set of ontological triples, each of which must remain in equilibrium. As events occur which disturb this equilibrium various actions are triggered to re-establish a balance between the resources. Such events include acquisition of a further text from external resources such as the Web or the addition of ontological triples to the ontology. We develop the concept of a knowledge gap between the coverage of an ontology and the corpus of texts as a measure triggering actions. We present an overview of the algorithm and its functionalities.
Resumo:
The inquiry documented in this thesis is located at the nexus of technological innovation and traditional schooling. As we enter the second decade of a new century, few would argue against the increasingly urgent need to integrate digital literacies with traditional academic knowledge. Yet, despite substantial investments from governments and businesses, the adoption and diffusion of contemporary digital tools in formal schooling remain sluggish. To date, research on technology adoption in schools tends to take a deficit perspective of schools and teachers, with the lack of resources and teacher ‘technophobia’ most commonly cited as barriers to digital uptake. Corresponding interventions that focus on increasing funding and upskilling teachers, however, have made little difference to adoption trends in the last decade. Empirical evidence that explicates the cultural and pedagogical complexities of innovation diffusion within long-established conventions of mainstream schooling, particularly from the standpoint of students, is wanting. To address this knowledge gap, this thesis inquires into how students evaluate and account for the constraints and affordances of contemporary digital tools when they engage with them as part of their conventional schooling. It documents the attempted integration of a student-led Web 2.0 learning initiative, known as the Student Media Centre (SMC), into the schooling practices of a long-established, high-performing independent senior boys’ school in urban Australia. The study employed an ‘explanatory’ two-phase research design (Creswell, 2003) that combined complementary quantitative and qualitative methods to achieve both breadth of measurement and richness of characterisation. In the initial quantitative phase, a self-reported questionnaire was administered to the senior school student population to determine adoption trends and predictors of SMC usage (N=481). Measurement constructs included individual learning dispositions (learning and performance goals, cognitive playfulness and personal innovativeness), as well as social and technological variables (peer support, perceived usefulness and ease of use). Incremental predictive models of SMC usage were conducted using Classification and Regression Tree (CART) modelling: (i) individual-level predictors, (ii) individual and social predictors, and (iii) individual, social and technological predictors. Peer support emerged as the best predictor of SMC usage. Other salient predictors include perceived ease of use and usefulness, cognitive playfulness and learning goals. On the whole, an overwhelming proportion of students reported low usage levels, low perceived usefulness and a lack of peer support for engaging with the digital learning initiative. The small minority of frequent users reported having high levels of peer support and robust learning goal orientations, rather than being predominantly driven by performance goals. These findings indicate that tensions around social validation, digital learning and academic performance pressures influence students’ engagement with the Web 2.0 learning initiative. The qualitative phase that followed provided insights into these tensions by shifting the analytics from individual attitudes and behaviours to shared social and cultural reasoning practices that explain students’ engagement with the innovation. Six indepth focus groups, comprising 60 students with different levels of SMC usage, were conducted, audio-recorded and transcribed. Textual data were analysed using Membership Categorisation Analysis. Students’ accounts converged around a key proposition. The Web 2.0 learning initiative was useful-in-principle but useless-in-practice. While students endorsed the usefulness of the SMC for enhancing multimodal engagement, extending peer-topeer networks and acquiring real-world skills, they also called attention to a number of constraints that obfuscated the realisation of these design affordances in practice. These constraints were cast in terms of three binary formulations of social and cultural imperatives at play within the school: (i) ‘cool/uncool’, (ii) ‘dominant staff/compliant student’, and (iii) ‘digital learning/academic performance’. The first formulation foregrounds the social stigma of the SMC among peers and its resultant lack of positive network benefits. The second relates to students’ perception of the school culture as authoritarian and punitive with adverse effects on the very student agency required to drive the innovation. The third points to academic performance pressures in a crowded curriculum with tight timelines. Taken together, findings from both phases of the study provide the following key insights. First, students endorsed the learning affordances of contemporary digital tools such as the SMC for enhancing their current schooling practices. For the majority of students, however, these learning affordances were overshadowed by the performative demands of schooling, both social and academic. The student participants saw engagement with the SMC in-school as distinct from, even oppositional to, the conventional social and academic performance indicators of schooling, namely (i) being ‘cool’ (or at least ‘not uncool’), (ii) sufficiently ‘compliant’, and (iii) achieving good academic grades. Their reasoned response therefore, was simply to resist engagement with the digital learning innovation. Second, a small minority of students seemed dispositionally inclined to negotiate the learning affordances and performance constraints of digital learning and traditional schooling more effectively than others. These students were able to engage more frequently and meaningfully with the SMC in school. Their ability to adapt and traverse seemingly incommensurate social and institutional identities and norms is theorised as cultural agility – a dispositional construct that comprises personal innovativeness, cognitive playfulness and learning goals orientation. The logic then is ‘both and’ rather than ‘either or’ for these individuals with a capacity to accommodate both learning and performance in school, whether in terms of digital engagement and academic excellence, or successful brokerage across multiple social identities and institutional affiliations within the school. In sum, this study takes us beyond the familiar terrain of deficit discourses that tend to blame institutional conservatism, lack of resourcing and teacher resistance for low uptake of digital technologies in schools. It does so by providing an empirical base for the development of a ‘third way’ of theorising technological and pedagogical innovation in schools, one which is more informed by students as critical stakeholders and thus more relevant to the lived culture within the school, and its complex relationship to students’ lives outside of school. It is in this relationship that we find an explanation for how these individuals can, at the one time, be digital kids and analogue students.
Resumo:
The computation of compact and meaningful representations of high dimensional sensor data has recently been addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution algorithms. The application of such algorithms in real-time systems necessitates the development of sequential algorithms that perform feature extraction online. This paper presents an efficient online NLDR scheme, Sequential-Isomap, based on incremental singular value decomposition (SVD) and the Isomap method. Example simulations demonstrate the validity and significant potential of this technique in real-time applications such as autonomous systems.
Resumo:
The aim of this paper is to contribute to our understanding of the link between HR practices, learning orientation and types of innovation in knowledge-intensive firms (KIFs). To this end, we first compiled a comprehensive overview of the existing literature on HR practices aimed at supporting innovation. On the basis of this literature, we then collected and analyzed data from a qualitative study of 19 Danish KIFs recognized for their innovation performance, focusing on links between the HR practices they use to support exploratory and exploitive learning behaviors to enhance incremental and/or radical innovation. The findings from this study demonstrate that KIFs utilize a range of HR practices that enable different learning orientations, based on the type of innovation compatible with their organizational goals.
Resumo:
In the current regulatory climate, there is increasing expectation that law schools will be able to demonstrate students’ acquisition of learning outcomes regarding collaboration skills. We argue that this is best achieved through a stepped and structured whole-of-curriculum approach to small group learning. ‘Group work’ provides deep learning and opportunities to develop professional skills, but these benefits are not always realised for law students. An issue is that what is meant by ‘group work’ is not always clear, resulting in a learning regime that may not support the attainment of desired outcomes. This paper describes different types of ‘group work', each associated with distinct learning outcomes. It suggests that ‘group work’ as an umbrella term to describe these types is confusing, as it provides little indication to students and teachers of the type of learning that is valued and is expected to take place. ‘Small group learning’ is a preferable general descriptor. Identifying different types of small group learning allows law schools to develop and demonstrate a scaffolded, sequential and incremental approach to fostering law students’ collaboration skills. To support learning and the acquisition of higherorder skills, different types of small group learning are more appropriate at certain stages of the program. This structured approach is consistent with social cognitive theory, which suggests that with the guidance of a supportive teacher, students can develop skills and confidence in one type of activity which then enhances motivation to participate in another.
Resumo:
We present four new reinforcement learning algorithms based on actor-critic and natural-gradient ideas, and provide their convergence proofs. Actor-critic rein- forcement learning methods are online approximations to policy iteration in which the value-function parameters are estimated using temporal difference learning and the policy parameters are updated by stochastic gradient descent. Methods based on policy gradients in this way are of special interest because of their com- patibility with function approximation methods, which are needed to handle large or infinite state spaces. The use of temporal difference learning in this way is of interest because in many applications it dramatically reduces the variance of the gradient estimates. The use of the natural gradient is of interest because it can produce better conditioned parameterizations and has been shown to further re- duce variance in some cases. Our results extend prior two-timescale convergence results for actor-critic methods by Konda and Tsitsiklis by using temporal differ- ence learning in the actor and by incorporating natural gradients, and they extend prior empirical studies of natural actor-critic methods by Peters, Vijayakumar and Schaal by providing the first convergence proofs and the first fully incremental algorithms.
Resumo:
Natural disasters are frequently exacerbated by anthropogenic mechanisms and have social and political consequences for communities. The role of community learning in disasters is seen to be increasingly important. However, the ways in which such learning unfolds in a disaster can differ substantially from case to case. This article uses a comparative case study methodology to examine catastrophes and major disasters from five countries (Japan, New Zealand, UK, US and Germany) to consider how community learning and adaptation occurs. An ecological model of learning is considered, where community learning is of small loop (adaptive, incremental, experimental) type or large loop (paradigm changing) type. Using this model we consider that there are three types of community learning that occur in disasters (navigation, organisation, reframing). The type of community learning that actually develops in a disaster depends upon a range of social factors such as stress and trauma, civic innovation and coercion.
Resumo:
Discrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this project was to analyze Galp’s loyalty approach in the Portuguese fuel market given the industry context, namely the entry of hypermarket and the resulting increase in competitiveness. The team performed analyses based on analytical models, qualitative research and internal interviews in order to assess Galp’s potential in the field of loyalty and consumers’ behavior. The final recommendations were based on incremental improvements to the Galp’s existing loyalty tool and an innovative paradigm change of the approach to loyalty.
Resumo:
People vary in the extent to which they prefer cooperative, competitive or individualistic achievement tasks. In the present research, we conducted two studies designed to investigate correlates and possible roots of these social interdependence orientations, namely approach and avoidance temperament, general self-efficacy, implicit theories of intelligence, and contingencies of self-worth based in others’ approval, competition, and academic competence. The results indicated that approach temperament, general self-efficacy, and incremental theory were positively, and entity theory was negatively related to cooperative preferences (|r| range from .11 to .41); approach temperament, general self-efficacy, competition contingencies, and academic competence contingencies were positively related to competitive preferences (|r| range from .16 to .46); and avoidance temperament, entity theory, competitive contingencies, and academic competence contingencies were positively related, and incremental theory was negatively related to individualistic preferences (|r| range from .09 to .15). The findings are discussed with regard to the meaning of each of the three social interdependence orientations, cultural differences among the observed relations, and implications for practicioners.