985 resultados para Immune Challenge
Resumo:
Purpose: Animal models of diseases are extremely important in the study of the physiopathogenesis of human diseases and for testing novel therapeutic interventions. The present study aimed to develop an animal model that simulates human allergic conjunctivitis and to study how allergic response may be influenced by the allergen dose used for immunization and by genetic factors. Methods: Sixty C57Bl/6 mice and 60 BALB/c mice were immunized with placebo, or 5 mu g or 500 mu g of allergen derived from Dermatophagoides pteronyssinus. After ocular challenge, the mice were examined in order to clinically verify the occurrence or not of conjunctivitis. Material obtained from animals was used for total and specific IgE and IgG1 dosage, for assays of Der p-specific lymphocyte proliferation and supernatant cytokine dosage, and for histopathological evaluation of conjunctiva. Results: We developed a murine model of allergic conjunctivitis induced by D. pteronyssinus. The model is similar to human disease both clinically and according to laboratory findings. In mouse, conjunctivitis was associated with a Th2 cytokine profile. However, IL-10 appeared to be involved with disease blockade. Mice of different strains have distinct immune responses, depending on the sensitization dose. Conclusions: The murine model developed is suitable for the study of immunopathogenesis and as a template for future therapies. Using BALB/c and C57BL/6 mice, we demonstrated that genetic factors play a role in determining susceptibility and resistance, as well as in establishing the allergen concentration needed to induce or to block disease development.
Resumo:
Galectin-3 is a p-galactoside-binding lectin implicated in the fine-tuning of innate immunity. Rhodococcus equi, a facultative intracellular bacterium of macrophages, causes severe granulomatous bronchopneumonia in young horses and immunocompromised humans. The aim of this study is to investigate the role of galectin-3 in the innate resistance mechanism against R. equi infection. The bacterial challenge of galectin-3-deficient mice (gal3(-/-)) and their wild-type counterpart (gal3(+/+)) revealed that the LD50 for the gal3(-/-) mice was about seven times higher than that for the gal3(+/+) mice. When challenged with a sublethal dose, gal3(-/-) mice showed lower bacteria counts and higher production of IL-12 and IFN-gamma production, besides exhibiting a delayed although increased inflammatory reaction. Gal3(-/-) macrophages exhibited a decreased frequency of bacterial replication and survival, and higher transcript levels of IL-1 beta, IL-6, IL-10, TLR2 and MyD88. R. equi-infected gal3(+/+) macrophages showed decreased expression of TLR2, whereas R. equi-infected gal3(-/-) macrophages showed enhanced expression of this receptor. Furthermore, galectin-3 deficiency in macrophages may be responsible for the higher IL-1 beta serum levels detected in infected gal3(-/-) mice. Therefore galectin-3 may exert a regulatory role in innate immunity by diminishing IL-1 beta production and thus affecting resistance to R. equi infection.
Resumo:
Toxoplasma gondii is an obligate intracellular parasite that infects a variety of mammals and birds. T. gondii also causes human toxoplasmosis; although toxoplasmosis is generally a benign disease, ocular, congenital or reactivated disease is associated with high numbers of disabled people. Infection occurs orally through the ingestion of meat containing cysts or by the intake of food or water contaminated with oocysts. Although the immune system responds to acute infection and mediates the clearance of tachyzoites, parasite cysts persist for the lifetime of the host in tissues such as the eye, muscle, and CNS. However, T. gondii RH strain tachyzoites irradiated with 255 Gy do not cause residual infection and induce the same immunity as a natural infection. To assess the humoral response in BALB/c and C57BL/6J mice immunized with irradiated tachyzoites either by oral gavage (p.o.) or intraperitoneal (i.p.) injection, we analyzed total and high-affinity IgG and IgA antibodies in the serum. High levels of antigen-specific IgG were detected in the serum of parenterally immunized mice, with lower levels in mice immunized via the oral route. However, most serum antibodies exhibited low affinity for antigen in both mice strain. We also found antigen specific IgA antibodies in the stools of the mice, especially in orally immunized BALB/c mice. Examination of bone marrow and spleen cells demonstrated that both groups of immunized mice clearly produced specific lgG, at levels comparable to chronic infection, suggesting the generation of IgG specific memory. Next, we challenged i.p. or p.o. immunized mice with cysts from ME49. VEG or P strains of T. gondii. Oral immunization resulted in partial protection as compared to challenged naive mice: these findings were more evident in highly pathogenic ME49 strain challenge. Additionally, we found that while mucosal IgA was important for protection against infection, antigen-specific IgG antibodies were involved with protection against disease and disease pathogenesis. Most antigen responsive cells in culture produced specific high-affinity IgG after immunization, diverse of the findings in serum IgG or from cells after infection, which produced low proportion of high-avidity IgG. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1 alpha, TNF-alpha, and leukotriene B-4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE(2). SGE treatments failed to inhibit neutrophil migration and MIP-1 alpha and LTB4 production in IL-10(-/-) mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE(2) release triggered by SGE remained increased in IL-10(-/-) mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4(+) T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE(2) and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE(2)/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases.
Resumo:
Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. Am J Physiol Endocrinol Metab 300: E858-E869, 2011. First published February 22, 2011; doi: 10.1152/ajpendo.00558.2010.-Acute exposure to bacterial lipopolysaccharide (LPS) is a potent inducer of immune response as well as hypophagia. Nevertheless, desensitization of responses to LPS occurs during long-term exposure to endotoxin. We induced endotoxin tolerance, injecting repeated (6LPS) LPS doses compared with single (1LPS) treatment. 1LPS, but not 6LPS group, showed decreased food intake and body weight, which was associated with an increased plasma leptin and higher mRNA expression of OB-Rb, MC4R, and SOCS3 in the hypothalamus. Hypophagia induced by 1LPS was associated with lower levels of 2-arachidonoylglycerol (2-AG), increased number of p-STAT3 neurons, and decreased AMP-activated protein kinase (AMPK) activity. Desensitization of hypophagia in the 6LPS group was related to high 2-AG, with no changes in p-STAT3 or increased p-AMPK. Leptin decreased food intake, body weight, 2-AG levels, and AMPK activity and enhanced p-STAT3 in control rats. However, leptin had no effects on 2-AG, p-STAT3, or p-AMPK in the 1LPS and 6LPS groups. Rats treated with HFD to induce leptin resistance showed neither hypophagia nor changes in p-STAT3 after 1LPS, suggesting that leptin and LPS recruit a common signaling pathway in the hypothalamus to modulate food intake reduction. Desensitization of hypophagia in response to repeated exposure to endotoxin is related to an inability of leptin to inhibit AMPK phosphorylation and 2-AG production and activate STAT3. SOCS3 is unlikely to underlie this resistance to leptin signaling in the endotoxin tolerance. The present model of prolonged inflammatory challenge may contribute to further investigations on mechanisms of leptin resistance.
Resumo:
In an effort to develop a suitable DNA vaccine candidate for dengue, using dengue-3 virus (DENV-3) as a prototype, the genes coding for premembrane (prM) and envelope proteins (E) were inserted into an expression plasmid. After selecting recombinant clones containing prM/E genes, protein expression in the cell monolayer was detected by indirect immunofluorescence and immunoprecipitation assays. After selecting three vaccine candidates (pVAC1DEN3, pVAC2DEN3 and pVAC3DEN3), they were analyzed in vivo to determine their ability to induce a DENV-3-specific immune response. After three immunizations, the spleens of the immunized animals were isolated, and the cells were cultivated to measure cytokine levels by ELISA and used for lymphoproliferation assays. All of the animals inoculated with the recombinant clones induced neutralizing antibodies against DENV-3 and produced a T cell proliferation response after specific stimuli. Immunized and control mice were challenged with a lethal dose of DENV-3 and observed in order to assess their survival capability. The groups that presented the best survival rate after the challenge were the animals vaccinated with the pVAC3DEN3 clones, with an 80% survival rate. Thus, these data show that we have manufactured a vaccine candidate for DENV-3 that is able to induce a specific immune response and protects mice against a lethal challenge.
Resumo:
A DNA vaccine expressing dengue-4 virus premembrane (prM) and envelope (E) genes was produced by inserting these genes into a mammalian expression plasmid (pCI). Following a thorough screening, including confirmation of protein expression in vitro, a recombinant clone expressing these genes was selected and used to immunize BALB/c mice. After 3 immunizations all the animals produced detectable levels of neutralizing antibodies against dengue-4 virus. The cytokines levels and T cell proliferation, detected ex vivo from the spleen of the immunized mice, showed that our construction induced substantial immune stimulation after three doses. Even though the antibody levels, induced by our DNA vaccine, were lower than those obtained in mice immunized with dengue-4 virus the levels of protection were high with this vaccine. This observation is further supported by the fact that 80% of the vaccine immunized group was protected against lethal challenge. In conclusion, we developed a DNA vaccine employing the genes of the prM and E proteins from dengue-4 virus that protects mice against this virus. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We describe the use of a murine model to evaluate resistance against subsequent challenge following a primary infection with oncospheres of Echinococcus granulosus. Mice (Kunming strain) were infected with hatched oncospheres of Echinococcus granulosus; 21 days later a second challenge was given by a different route of infection. A primary infection by intraperitoneal (i.p.) injection stimulated 100 and 90.5% protection in terms of reduced cyst numbers against a secondary infection given subcutaneously (s.c.) or intravenously (i.v.) respectively. A primary infection given s.c. followed by i.p. or i.v. challenge resulted in 84.0 and 100% protection, respectively. Intravenous infection followed by i.p. or s.c. challenge resulted in 98.5 and 69.4% protection, respectively. With the i.v. route of infection, almost all resultant cysts were present in the lungs. The data show that a primary infection with oncospheres can induce total or a high degree of protection against a subsequent challenge and confirms that natural (concomitant) immunity can be stimulated in the intermediate host as the result of a primary infection. This may explain the decline in hydatid infection in sheep older than 2 years in hyper-endemic areas such as those found in Xingjiang, China. These older sheep may have been earlier infected and have subsequently self-cured, with the primary infection stimulating an immune response that protects the intermediate host animals from further infection. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Background: The immune response to Porphyromonas gingivalis in the mouse abscess model is known to be dependent upon CD4 T-cell activation and the regulatory role of cytokines. The role of interleukin-10 (IL-10) in this mouse model was examined in vivo. Methods: One-week-old, female BALB/c mice were divided into 4 groups. Groups 1 and 2 were given intraperitoneal (ip) injections of phosphate buffered saline (PBS) weekly for 5 weeks. Group 3 was given an ip injection of rat immunoglobulin. Group 4 was injected with rat anti-IL-10 antibodies. At week 6, group 1 was sham-immunized with PBS, and groups 2, 3, and 4 were injected with P gingivalis lipopolysaccharide (Pg-LPS) weekly for 2 weeks. One week after the final immunization, delayed-type hypersensitivity (DTH) was assessed by footpad swelling to Pg-LPS. The level of serum antibodies to Pg-LPS and IFN-gamma (IFN-gamma) was determined by enzyme-linked immunosorbent assay. Dorsal abscess formation induced by the injection of viable P gingivalis was examined daily for 30 days. Results: The footpad swelling of the anti-IL-10-treated group (group 4) was significantly higher than that of groups 1 to 3. Similarly, the serum IFN-gamma level in group 4 was much higher than that of the other experimental groups. There was no significant difference in serum IgG antibodies to Pg-LPS in any of the experimental groups. However, the level of IgM antibodies in group 4 mice was significantly lower than that in groups 2 and 3. In addition, serum IgG1 was suppressed in group 4 mice, while IgG2a antibodies were raised. However, there was no difference observed between the levels of IgG2b and IgG3 antibodies in any group of mice. The lesions in sham-immunized mice (group 1) persisted for 30 days, and those in group 2 and 3 were undetected by day 18 and 20, respectively. In sharp contrast, lesions in group 4 had healed completely by day 13. Conclusions: This study has shown that IL-10 depletion in vivo in P gingivalis LPS-induced immune response in mice led to an elevated DTH response, an increase in serum IFN-gamma levels, and raised levels of IgG and IgG2a antibodies. Treatment with anti-IL-10 antibodies resulted in suppressed IgG I and IgM responses and a more rapid healing of abscesses than in non-IL-10-depleted mice. These results suggest that IL-10 depletion in Pg-LPS-induced immune response in mice may lead to a Th1-like immune response and provide strong protection against a subsequent challenge with live P gingivalis in an abscess model.
Resumo:
Background: It has previously been suggested that CD4(+) T cells play a pivotal role in regulating the immune response to periodontal pathogens. The aim of the present study therefore was to determine delayed type hypersensitivity (DTH), spleen cell proliferation, serum and splenic anti-Porphyromonas gingivalis antibody levels, and lesion sizes following challenge with viable P. gingiualis in CD4-depleted BALB/c mice immunized with P. gingiualis outer membrane proteins (OMP). Methods: Four groups of BALB/c mice were used. Groups 1 and 2 were injected intraperitoneally (ip) with saline for 3 consecutive days and then weekly throughout the experiment. Groups 3 and 4 were injected ip with rat immunoglobulin and a monoclonal rat anti-mouse CD4 antibody, respectively. Two days later, group 1 mice were injected ip with saline only, while all the other groups were immunized ip with P. gingiualis OMP weekly for 3 weeks. One week later following the last immunization of OMP, 3 separate experiments were conducted to determine: 1) the DTH response to P. gingiualis OMP by measuring footpad swelling; 2) the levels of antibodies to P. gingiualis in serum samples and spleen cell cultures using an enzyme-linked immunosorbent assay, as well as spleen cell proliferation after stimulation with OMP; and 3) the lesion sizes after a subcutaneous challenge with viable P. gingiualis cells. Results: In CD4(+) T-cell-depleted mice (group 4), the DTH response and antigen-stimulated cell proliferation were significantly suppressed when compared to groups 2 and 3. Similarly, the levels of serum and splenic IgM, IgG, and all IgG subclass antibodies to P. gingiualis OMP were depressed. Delayed healing of P. gingivalis-induced lesions was also observed in the CD4(+) T-cell-depleted group. Conclusions: This study has shown that depletion of CD4(+) T cells prior to immunization with P. gingiualis OMP led to the suppression of both the humoral and cell-mediated immune response to this microorganism and that this was associated with delayed healing. These results suggest that the induction of the immune response to P. gingiualis is a CD4(+) T-cell-dependent mechanism and that CD4(+) T cells are important in the healing process.
Resumo:
Antibodies have the potential to be therapeutic reagents for malaria. Here we describe the production of a novel phage antibody display library against the C-terminal 19 kDa region of the Plasmodium yoelii YM merozoite surface protein-1 (MSP1(19)). In vivo studies against homologous lethal malaria challenge show an anti-parasite effect in a dose dependent manner, and analysis by plasmon resonance indicates binding to the antigen is comparable to the binding of a protective monoclonal antibody. The data support the lack of a need for any antibody Fc-related function and hold great significance for the development of a therapeutic reagent for malaria. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Immunity induced by the 19-kDa fragment of Plasmodium yoelii merozoite surface protein 1 (MSP1(19)) is dependent on high titers of specific antibodies present at the time of challenge and a continuing active immune response postinfection. However, the specificity of the active immune response postinfection has not been defined. In particular, it is not known whether anti-MSP1(19) antibodies that arise following infection alone are sufficient for protection. We developed systems to investigate whether an MSP1(19)-specific antibody response alone both prechallenge and postchallenge is sufficient for protection. We were able to exclude antibodies with other specificities, as well as any contribution of MSP1(19)-specific CD4(+) T cells acting independent of antibody, and we concluded that an immune response focused solely on MSP1(19)-specific antibodies is sufficient for protection. The data imply that the ability of natural infection to boost an MSPI,g-specific antibody response should greatly improve vaccine efficacy.
Resumo:
Antigen-specific suppression of a previously primed immune response is a major challenge for immunotherapy of autoimmune disease. ReIB activation is required for myeloid DC differentiation. Here, we show that antigen-exposed DCs in which ReIB function is inhibited lack cell surface CD40, prevent priming of immunity, and suppress previously primed immune responses. DCs generated from CD40-deficient mice similarly confer suppression. Regulatory CD4(+) T cells induced by the DCs transfer antigen-specific Infectious tolerance to primed recipients in an interleukin10-dependent fashion. Thus CD40, regulated by ReIB activity, determines the consequences of antigen presentation by myeloid DCs. These observations have significance for autoimmune immunotherapy and suggest a mechanism by which peripheral tolerance might be constitutively maintained by RelB(-) CD40(-) DCs.
Resumo:
The humoral and cellular immune responses as well as the resistance to infection with bloodstream forms of T. cruzi were studied in mice immunized with acidic antigenic fractions from parasite cytosol, F III and F IV, plus Bordetella pertussis as adjuvant. The immunization with F III induced positive ITH and DTH responses to homologous antigens. In mice immunized with F IV, the ITH was negative and four out of six animals presented positive DTH reactions. In both groups of mice the analysis of IgG aginst T. cruzi showed that the major isotype elicited was IgG1. Specific IgE was also detected in sera from F III immunized mice, thus confirming the presence of homocytothropic antibodies. The parasitemias reached by F III and F IV immunized mice after challenge were lower than those of the controls showing in this way a partial protection against the acute infection. The histological studies of heart and skeletal muscle performed two months after the infection revealed variable mononuclear infiltration in all infected mice despite immunization.
Resumo:
We have designed a vaccine model based on induction of cell-mediated immunity and shown that it protects mice against Schistosoma mansoni infection. Mice are immunized by intradermal injection with schistosome antigens plus BCG. Resistance is dependent on the route of antigen presentation and the adjuvant chosen. The pattern of resistance correlates with sensitization of T lymphocytes for production of gamma interferon, a macrophage activating lymphokine that stimulates the cellular effector mechanism of protection. Purified schistosome paramyosin, a muscle cell component present in soluble parasite antigenic preparations, is immunogenic for T lymphocytes and induces resistance when given intradermally with BCG. It is likely that this protein, and possibly other soluble molecules that are released by the parasites of a challenge infection, induce a cellular inflammatory response resulting in larval trapping and/or killing by activated macrophages. These results verify the feasibility of a vaccine against schistosomiasis based on induction of cell-mediated immune resistance mechanisms.