970 resultados para Image space
Resumo:
The second half of the XX century was marked by a great increase in the number of people living in cities. Urban agglomerations became poles of attraction for migration flows and these phenomena, coupled with growing car-ownership rates, resulted in the fact that modern transport systems are characterized by large number of users and traffic modes. The necessity to organize these complex systems and to provide space for different traffic modes changed the way cities look. Urban areas had to cope with traffic flows, and as a result nowadays typical street pattern consists of a road for motorized vehicles, a cycle lane (in some cases), pavement for pedestrians, parking and a range of crucial signage to facilitate navigation and make mobility more secure. However, this type of street organization may not be desirable in certain areas, more specifically, in the city centers. Downtown areas have always been places where economic, leisure, social and other types of facilities are concentrated, not surprisingly, they often attract large number of people and this frequently results in traffic jams, air and noise pollution, thus creating unpleasant environment. Besides, excessive traffic signage in central locations can harm the image and perception of a place, this relates in particular to historical centers with architectural heritage.
Resumo:
Water transport in wood is vital for the survival of trees. With synchrotron radiation X-ray tomographic microscopy (SRXTM), it has become possible to characterize and quantify the three-dimensional (3D) network formed by vessels that are responsible for longitudinal transport. In the present study, the spatial size dependence of vessels and the organization inside single growth rings in terms of vessel-induced porosity was studied by SRXTM. Network characteristics, such as connectivity, were deduced by digital image analysis from the processed tomographic data and related to known complex network topologies.
Resumo:
Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.
Resumo:
The purpose of this study was to prospectively compare free-breathing navigator-gated cardiac-triggered three-dimensional steady-state free precession (SSFP) spin-labeling coronary magnetic resonance (MR) angiography performed by using Cartesian k-space sampling with that performed by using radial k-space sampling. A new dedicated placement of the two-dimensional selective labeling pulse and an individually adjusted labeling delay time approved by the institutional review board were used. In 14 volunteers (eight men, six women; mean age, 28.8 years) who gave informed consent, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, vessel length, and subjective image quality were investigated. Differences between groups were analyzed with nonparametric tests (Wilcoxon, Pearson chi2). Radial imaging, as compared with Cartesian imaging, resulted in a significant reduction in the severity of motion artifacts, as well as an increase in SNR (26.9 vs 12.0, P < .05) in the coronary arteries and CNR (23.1 vs 8.8, P < .05) between the coronary arteries and the myocardium. A tendency toward improved vessel sharpness and vessel length was also found with radial imaging. Radial SSFP imaging is a promising technique for spin-labeling coronary MR angiography.
Resumo:
In visceral leishmaniasis, phlebotomine vectors are targets for control measures. Understanding the ecosystem of the vectors is a prerequisite for creating these control measures. This study endeavours to delineate the suitable locations of Phlebotomus argentipes with relation to environmental characteristics between endemic and non-endemic districts in India. A cross-sectional survey was conducted on 25 villages in each district. Environmental data were obtained through remote sensing images and vector density was measured using a CDC light trap. Simple linear regression analysis was used to measure the association between climatic parameters and vector density. Using factor analysis, the relationship between land cover classes and P. argentipes density among the villages in both districts was investigated. The results of the regression analysis indicated that indoor temperature and relative humidity are the best predictors for P. argentipes distribution. Factor analysis confirmed breeding preferences for P. argentipes by landscape element. Minimum Normalised Difference Vegetation Index, marshy land and orchard/settlement produced high loading in an endemic region, whereas water bodies and dense forest were preferred in non-endemic sites. Soil properties between the two districts were studied and indicated that soil pH and moisture content is higher in endemic sites compared to non-endemic sites. The present study should be utilised to make critical decisions for vector surveillance and controlling Kala-azar disease vectors.
Resumo:
The Quality Plan aims to create an image of the health system as an intelligent system comprised of knowledge-generating organisations integrated into a much more comprehensive paradigm in line with knowledge societies; a health system which is part of an equally intelligent and innovative society that acknowledges the use of science and technology both as a source of welfare and as a means of solving many of its problems. The aim of this document is to collate the many activities which comprise three scenarios (citizens, professionals and shared space) and establish the roadmap for the quality policy strategies designed by the Ministry of Health of the Regional Government of Andalusia for the coming years and also to open the necessary channels of communication with society so that society itself, as well as being the beneficiary of the outcomes, also becomes the main protagonist.
Resumo:
The impact of radial k-space sampling and water-selective excitation on a novel navigator-gated cardiac-triggered slab-selective inversion prepared 3D steady-state free-precession (SSFP) renal MR angiography (MRA) sequence was investigated. Renal MRA was performed on a 1.5-T MR system using three inversion prepared SSFP approaches: Cartesian (TR/TE: 5.7/2.8 ms, FA: 85 degrees), radial (TR/TE: 5.5/2.7 ms, FA: 85 degrees) SSFP, and radial SSFP combined with water-selective excitation (TR/TE: 9.9/4.9 ms, FA: 85 degrees). Radial data acquisition lead to significantly reduced motion artifacts (P < 0.05). SNR and CNR were best using Cartesian SSFP (P < 0.05). Vessel sharpness and vessel length were comparable in all sequences. The addition of a water-selective excitation could not improve image quality. In conclusion, radial k-space sampling reduces motion artifacts significantly in slab-selective inversion prepared renal MRA, while SNR and CNR are decreased. The addition of water-selective excitation could not improve the lower CNR in radial scanning.
Resumo:
PURPOSE: To investigate the potential of free-breathing 3D steady-state free precession (SSFP) imaging with radial k-space sampling for coronary MR-angiography (MRA), coronary projection MR-angiography and coronary vessel wall imaging. MATERIALS AND METHODS: A navigator-gated free-breathing T2-prepared 3D SSFP sequence (TR = 6.1 ms, TE = 3.0 ms, flip angle = 120 degrees, field-of-view = 360 mm(2)) with radial k-space sampling (384 radials) was implemented for coronary MRA. For projection coronary MRA, this sequence was combined with a 2D selective aortic spin tagging pulse. Coronary vessel wall imaging was performed using a high-resolution inversion-recovery black-blood 3D radial SSFP sequence (384 radials, TR = 5.3 ms, TE = 2.7 ms, flip angle = 55 degrees, reconstructed resolution 0.35 x 0.35 x 1.2 mm(3)) and a local re-inversion pulse. Six healthy volunteers (two for each sequence) were investigated. Motion artifact level was assessed by two radiologists. Results: In coronary MRA, the coronary lumen was displayed with a high signal and high contrast to the surrounding lumen. Projection coronary MRA demonstrated selective visualization of the coronary lumen while surrounding tissue was almost completely suppressed. In coronary vessel wall imaging, the vessel wall was displayed with a high signal when compared to the blood pool and the surrounding tissue. No visible motion artifacts were seen. Conclusion: 3D radial SSFP imaging enables coronary MRA, coronary projection MRA and coronary vessel wall imaging with a low motion artifact level.
Resumo:
Aim: The psychoanalytic theories of Bion, Anzieu, Berger and Gibello postulate that the development of thinking depends upon the formation of a psychic space. This thinking space has its origin in the body and in our interpersonal relations. This study aims to validate this psychodynamic hypothesis. Method: A group of 8- to 14-year-old children participated in this research. The presence of a thinking space was operationalized by the "barrier" and "penetration" scores on the Rorschach's Fisher and Cleveland scales and intellectual efficiency was measured using a short version of the WISC-IV. Results: Results show that extreme scores on the "barrier" and "penetration" variables predict a lower intellectual level than average scores on the same variables. Conclusion: The development of thinking and personality are undoubtedly linked and the "barrier" and "penetration" variables are useful measures when evaluating the development of a space for thought.
Resumo:
We present an open-source ITK implementation of a directFourier method for tomographic reconstruction, applicableto parallel-beam x-ray images. Direct Fourierreconstruction makes use of the central-slice theorem tobuild a polar 2D Fourier space from the 1D transformedprojections of the scanned object, that is resampled intoa Cartesian grid. Inverse 2D Fourier transform eventuallyyields the reconstructed image. Additionally, we providea complex wrapper to the BSplineInterpolateImageFunctionto overcome ITKâeuro?s current lack for image interpolatorsdealing with complex data types. A sample application ispresented and extensively illustrated on the Shepp-Loganhead phantom. We show that appropriate input zeropaddingand 2D-DFT oversampling rates together with radial cubicb-spline interpolation improve 2D-DFT interpolationquality and are efficient remedies to reducereconstruction artifacts.
Resumo:
The authors compared radial steady-state free precession (SSFP) coronary magnetic resonance (MR) angiography, cartesian k-space sampling SSFP coronary MR angiography, and gradient-echo coronary MR angiography in 16 healthy adults and four pilot study patients. Standard gradient-echo MR imaging with a T2 preparatory pulse and cartesian k-space sampling was the reference technique. Image quality was compared by using subjective motion artifact level and objective contrast-to-noise ratio and vessel sharpness. Radial SSFP, compared with cartesian SSFP and gradient-echo MR angiography, resulted in reduced motion artifacts and superior vessel sharpness. Cartesian SSFP resulted in increased motion artifacts (P <.05). Contrast-to-noise ratio with radial SSFP was lower than that with cartesian SSFP and similar to that with the reference technique. Radial SSFP coronary MR angiography appears preferable because of improved definition of vessel borders.
MRI of coronary vessel walls using radial k-space sampling and steady-state free precession imaging.
Resumo:
OBJECTIVE: The objective of our study was to investigate the impact of radial k-space sampling and steady-state free precession (SSFP) imaging on image quality in MRI of coronary vessel walls. SUBJECTS AND METHODS: Eleven subjects were examined on a 1.5-T MR system using three high-resolution navigator-gated and cardiac-triggered 3D black blood sequences (cartesian gradient-echo [GRE], radial GRE, and radial SSFP) with identical spatial resolution (0.9 x 0.9 x 2.4 mm3). The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and motion artifacts were analyzed. RESULTS: The mean SNR and CNR of the coronary vessel wall were improved using radial imaging and were best using radial k-space sampling combined with SSFP imaging. Vessel border definition was similar for all three sequences. Radial k-space sampling was found to be less sensitive to motion. Consistently good image quality was seen with the radial GRE sequence. CONCLUSION: Radial k-space sampling in MRI of coronary vessel walls resulted in fewer motion artifacts and improved SNR and CNR. The use of SSFP imaging, however, did not result in improved coronary vessel wall visualization.
Resumo:
This article reports on a lossless data hiding scheme for digital images where the data hiding capacity is either determined by minimum acceptable subjective quality or by the demanded capacity. In the proposed method data is hidden within the image prediction errors, where the most well-known prediction algorithms such as the median edge detector (MED), gradient adjacent prediction (GAP) and Jiang prediction are tested for this purpose. In this method, first the histogram of the prediction errors of images are computed and then based on the required capacity or desired image quality, the prediction error values of frequencies larger than this capacity are shifted. The empty space created by such a shift is used for embedding the data. Experimental results show distinct superiority of the image prediction error histogram over the conventional image histogram itself, due to much narrower spectrum of the former over the latter. We have also devised an adaptive method for hiding data, where subjective quality is traded for data hiding capacity. Here the positive and negative error values are chosen such that the sum of their frequencies on the histogram is just above the given capacity or above a certain quality.
Resumo:
The aim of the present study is to determine the level of correlation between the 3-dimensional (3D) characteristics of trabecular bone microarchitecture, as evaluated using microcomputed tomography (μCT) reconstruction, and trabecular bone score (TBS), as evaluated using 2D projection images directly derived from 3D μCT reconstruction (TBSμCT). Moreover, we have evaluated the effects of image degradation (resolution and noise) and X-ray energy of projection on these correlations. Thirty human cadaveric vertebrae were acquired on a microscanner at an isotropic resolution of 93μm. The 3D microarchitecture parameters were obtained using MicroView (GE Healthcare, Wauwatosa, MI). The 2D projections of these 3D models were generated using the Beer-Lambert law at different X-ray energies. Degradation of image resolution was simulated (from 93 to 1488μm). Relationships between 3D microarchitecture parameters and TBSμCT at different resolutions were evaluated using linear regression analysis. Significant correlations were observed between TBSμCT and 3D microarchitecture parameters, regardless of the resolution. Correlations were detected that were strongly to intermediately positive for connectivity density (0.711≤r(2)≤0.752) and trabecular number (0.584≤r(2)≤0.648) and negative for trabecular space (-0.407 ≤r(2)≤-0.491), up to a pixel size of 1023μm. In addition, TBSμCT values were strongly correlated between each other (0.77≤r(2)≤0.96). Study results show that the correlations between TBSμCT at 93μm and 3D microarchitecture parameters are weakly impacted by the degradation of image resolution and the presence of noise.
Resumo:
Breathing-induced bulk motion of the myocardium during data acquisition may cause severe image artifacts in coronary magnetic resonance angiography (MRA). Current motion compensation strategies include breath-holding or free-breathing MR navigator gating and tracking techniques. Navigator-based techniques have been further refined by the applications of sophisticated 2D k-space reordering techniques. A further improvement in image quality and a reduction of relative scanning duration may be expected from a 3D k-space reordering scheme. Therefore, a 3D k-space reordered acquisition scheme including a 3D navigator gated and corrected segmented k-space gradient echo imaging sequence for coronary MRA was implemented. This new zonal motion-adapted acquisition and reordering technique (ZMART) was developed on the basis of a numerical simulation of the Bloch equations. The technique was implemented on a commercial 1.5T MR system, and first phantom and in vivo experiments were performed. Consistent with the results of the theoretical findings, the results obtained in the phantom studies demonstrate a significant reduction of motion artifacts when compared to conventional (non-k-space reordered) gating techniques. Preliminary in vivo findings also compare favorably with the phantom experiments and theoretical considerations. Magn Reson Med 45:645-652, 2001.