889 resultados para INNATE IMMUNE DEFENSE
Resumo:
Chronic inhalation of grain dust is associated with asthma and chronic bronchitis in grain worker populations. Exposure to fungal particles was postulated to be an important etiologic agent of these pathologies. Fusarium species frequently colonize grain and straw and produce a wide array of mycotoxins that impact human health, necessitating an evaluation of risk exposure by inhalation of Fusarium and its consequences on immune responses. Data showed that Fusarium culmorum is a frequent constituent of aerosols sampled during wheat harvesting in the Vaud region of Switzerland. The aim of this study was to examine cytokine/chemokine responses and innate immune sensing of F. culmorum in bone-marrow-derived dendritic cells and macrophages. Overall, dendritic cells and macrophages responded to F. culmorum spores but not to its secreted components (i.e., mycotoxins) by releasing large amounts of macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, monocyte chemoattractant protein (MCP)-1, RANTES, and interleukin (IL)-12p40, intermediate amounts of tumor necrosis factor (TNF), IL-6, IL-12p70, IL-33, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein (IP-10), but no detectable amounts of IL-4 and IL-10, a pattern of mediators compatible with generation of Th1 or Th17 antifungal protective immune responses rather than with Th2-dependent allergic responses. The sensing of F. culmorum spores by dendritic cells required dectin-1, the main pattern recognition receptor involved in β-glucans detection, but likely not MyD88 and TRIF-dependent Toll-like receptors. Taken together, our results indicate that F. culmorum stimulates potently innate immune cells in a dectin-1-dependent manner, suggesting that inhalation of F. culmorum from grain dust may promote immune-related airway diseases in exposed worker populations.
Resumo:
Background: Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Results: Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in earlylife environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoorhoused pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results.
Resumo:
Echinometra lucunter, (Pinda) is a sea urchin encountered in the Brazilian coast and exposed to high and low temperatures related to low and high tides. Despite their great distribution and importance, few studies have been done on the biological function of their coelomocytes. Thus, Echinometra lucunter perivisceral coelomocytes were characterized under optical and transmission electron microscopy. Phagocytic amoebocytes in the perivisceral coelom were labelled by injecting ferritin, and ferritin labelled phagocytic amoebocytes were found in the peristomial connective tissue after injecting India ink into the tissue, indicating the amoebocytes ability to respond to an inflammatory stimulus. Results showed that the phagocytic amoebocytes were the main inflammatory cells found in the innate immune response of E lucunter. While other works have recorded these phenomena in sea urchins found in moderate and constant temperature, this study reports on these same phenomena in a tropical sea urchin under great variation of temperature, thus providing new data to inflammatory studies in invertebrate pathology. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The local and systemic production of prostaglandin E-2 (PGE(2)) and its actions in phagocytes lead to immunosuppressive conditions. PGE2 is produced at high levels during inflammation, and its suppressive effects are caused by the ligation of the E prostanoid receptors EP2 and EP4, which results in the production of cyclic AMP. However, PGE(2) also exhibits immunostimulatory properties due to binding to EP3, which results in decreased cAMP levels. The various guanine nucleotide-binding proteins (G proteins) that are coupled to the different EP receptors account for the pleiotropic roles of PGE(2) in different disease states. Here, we discuss the production of PGE(2) and the actions of this prostanoid in phagocytes from different tissues, the relative contribution of PGE(2) to the modulation of innate immune responses, and the novel therapeutic opportunities that can be used to control inflammatory responses.
Resumo:
Sporotrichosis is an infection caused by the dimorphic fungus Sporothrix schenckii. Toll-like receptors (TLRs) play an important role in immunity, since they bind to pathogen surface antigens and initiate the immune response. However, little is known about the role of TLR-2 and fungal surface antigens in the recognition of S. schenckii and in the subsequent immune response. This study aimed to evaluate the involvement of TLR-2 and fungal surface soluble (SolAg) and lipidic (LipAg) antigens in phagocytosis of S. schenckii and production of immune mediators by macrophages obtained from WT and TLR-2 -/- animals. The results showed that TLR-2-/- animals had had statistical lower percentage of macrophages with internalized yeasts compared to WT. SolAg and LipAg impaired phagocytosis and immunological mediator production for both WT and TLR-2-/-. The absence of TLR-2 led to lower production of the cytokines TNF, IL-1β, IL-12 and IL-10 compared to WT animals. These results suggest a new insight in relation to how the immune system, through TLR-2, recognizes and induces the production of mediators in response to the fungus S. schenckii. Copyright © Informa Healthcare USA, Inc.
Resumo:
Objectives: To investigate if the participation of Atopobium vaginae, Megasphaera sp. and Leptotrichia sp. in the bacterial community of bacterial vaginosis (BV) is associated with distinct patterns of this condition. Methods: In this cross-sectional controlled study, 205 women with BV and 205 women with normal flora were included. Vaginal rinsing samples were obtained for measuring the levels of pro-inflammatory cytokines and bacterial sialidases. Real-time PCR was used to quantify the BV-associated bacteria and to estimate the total bacterial load using the 16S rRNA. Principal component analysis (PCA) using the measured parameters was performed to compare the BV samples with lower and higher loads of the species of interest. Results: Higher bacterial load (p<0.001), levels of interleukin 1-β (p<0.001) and sialidase activity (p<0.001) were associated with BV. Women with BV and higher relative loads of A vaginae, Megasphaera sp. and Leptotrichia sp. presented increased sialidase activity, but unchanged cytokine levels. PCA analysis did not indicate a different pattern of BV according to the loads of A vaginae, Megasphaera sp. and Leptotrichia sp. Conclusions: Greater participation of A vaginae, Megasphaera sp. and Leptotrichia sp. in vaginal bacterial community did not indicate a less severe form of BV; moreover, it was associated with increased sialidase activity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The understanding of fish immune system structure and function is essential for the development of new technologies and products to improve productivity. This is the first review on immune system of fish with Brazilian studies. Aquaculture in Brazil has shown massive growth in recent years due to methods of culture intensification. However, these procedures led to disease outbreaks, as well as the chemotherapy and the misuse of antibiotics. A viable alternative to avoid the use of chemicals and prevent economic losses is the administration of immunostimulants and prebiotcs, which act by increasing the innate immune system. In Brazil there is a lack of studies on fish immune system, except by some groups that have studied the effects of the immunostimulants administration in various species.
Resumo:
Mygalin is an antibacterial molecule isolated froth the hemocytes of the spider Acanthoscurria gomesiana. It was identified as bis-acylpolyamine spermidine. We evaluated the modulator effects of synthetic Mygalin in the innate immune response. We demonstrate that Mygalin induces IFN-gamma synthesis by splenocytes increasing the nitrite secretion by splenocytes and macrophages. A specific inhibitor of iNOS abrogated Mygalin-induced nitrite production in macrophages independent of IFN-gamma activation. In addition, Mygalin-activated macrophages produced TNF-alpha but not IL-1 beta, demonstrating that Mygalin does not act directly on the inflammasome. Furthermore, this compound did not affect spontaneous or Concanavalin A-induced proliferative responses by murine splenocytes and did not induce IL-5 or apoptosis of splenocytes or bone marrow-derived macrophages. These data provide evidence that Mygalin modulates the innate immune response by inducing IFN-gamma and NO synthesis. The combined immune regulatory and antibacterial qualities of Mygalin should be explored as a strategy to enhance immune responses in infection. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Ocean temperatures are rising throughout the world, making it necessary to evaluate the impact of these temperature changes on sea urchins, which are well-known bioindicators. This study evaluated the effect of an increase in temperature on the immune response of the subtidal Lytechinus variegatus and the intertidal Echinometra lucunter sea urchins. Both species were exposed to 20 (control), 25 and 30 °C temperatures for 24 h, 2, 7 and 14 days. Counting of coelomocytes and assays on the phagocytic response, adhesion and spreading of coelomocytes were performed. Red and colorless sphere cells were considered biomarkers for heat stress. Moreover, a significant decrease in the phagocytic indices and a decrease in both cell adhesion and cell spreading were observed at 25 and 30 °C for L. variegatus. For E. lucunter, the only alteration observed was for the cell proportions. This report shows how different species of sea urchins respond immunologically to rising temperatures