965 resultados para INFLAMMATORY MEDIATORS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Periodontal disease (PD) is characterized as an inflammatory process that compromises the support and protection of the periodontium. Patients with Down's syndrome (DS) are prone to develop PD. Neutrophils (NE) are the first line of defense against infection and their absence sets the stage for disease. Aim: To compare the activity and function of NE in the peripheral blood from DS patients with and without PD, assisted at the Center for Dental Assistance to Patients with Special Needs affiliated with the School of Dentistry of Araçatuba, Brazil. Methods: Purified NE were collected from peripheral blood of 22 DS patients. NE were used to detect the 5-lypoxigenase (5-LO) expression by RT-PCR. Plasma from peripheral blood was collected to measure tumor necrosis factor-a (TNF-α) and interleukin-8 (IL-8) by ELISA and nitrite (NO 3) using a Griess assay. Results: Data analysis demonstrated that DS patients with PD present high levels of TNF-a and IL-8 when compared with DS patients without PD. However, there was no statistically significant difference in the levels of NO 3 production between the groups. The levels of the inflammatory mediator 5-LO expression increased in DS patients with PD. Conclusions: According with these results, it was concluded that TNF-α and IL-8 are produced by DS patients with PD. Furthermore, DS patients with PD presented high levels of 5-LO expression, suggesting the presence of leukotriene B 4 (LTB 4) in PD, thus demonstrating that the changes in NE function due to the elevation of inflammatory mediators contribute to PD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Annexin A1 (AnxA1) is a protein that displays potent anti-inflammatory properties, but its expression in eye tissue and its role in ocular inflammatory diseases have not been well studied. We investigated the mechanism of action and potential uses of AnxA1 and its mimetic peptide (Ac2-26) in the endotoxin-induced uveitis (EIU) rodent model and in human ARPE-19 cells activated by LPS. In rats, analysis of untreated EIU after 24 and 48 h or EIU treated with topical applications or with a single s.c. injection of Ac2-26 revealed the anti-inflammatory actions of Ac2-26 on leukocyte infiltration and on the release of inflammatory mediators; the systemic administration of Boc2, a formylated peptide receptor (fpr) antagonist, abrogated the peptide's protective effects. Moreover, AnxA1-/- mice exhibited exacerbated EIU compared with wild-type animals. Immunohistochemical studies of ocular tissue showed a specific AnxA1 posttranslational modification in EIU and indicated that the fpr2 receptor mediated the anti-inflammatory actions of AnxA1. In vitro studies confirmed the roles of AnxA1 and fpr2 and the protective effects of Ac2-26 on the release of chemical mediators in ARPE-19 cells. Molecular analysis of NF-κB translocation and IL-6, IL-8, and cyclooxygenase-2 gene expression indicated that the protective effects of AnxA1 occur independently of the NF-κB signaling pathway and possibly in a posttranscriptional manner. Together, our data highlight the role of AnxA1 in ocular inflammation, especially uveitis, and suggest the use of AnxA1 or its mimetic peptide Ac2-26 as a therapeutic approach. Copyright © 2013 by The American Association of Immunologists, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: The human antimicrobial peptide cathelicidin (LL-37) possesses anti-inflammatory properties that may contribute to attenuating the inflammatory process associated with chronic periodontitis. Plant polyphenols, including those from cranberry and green tea, have been reported to reduce inflammatory cytokine secretion by host cells. In the present study, we hypothesized that A-type cranberry proanthocyanidins (AC-PACs) and green tea epigallocatechin-3-gallate (EGCG) act in synergy with LL-37 to reduce the secretion of inflammatory mediators by oral mucosal cells. Methods: A three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts treated with non-cytotoxic concentrations of AC-PACs (25 and 50 mg/ml), EGCG (1 and 5 mg/ml), and LL-37 (0.1 and 0.2 mM) individually and in combination (AC-PACs + LL-37 and EGCG + LL-37) were stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS). Multiplex ELISA assays were used to quantify the secretion of 54 host factors, including chemokines, cytokines, growth factors, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). Results: LL-37, AC-PACs, and EGCG, individually or in combination, had no effect on the regulation of MMP and TIMP secretion but inhibited the secretion of several cytokines. ACPACs and LL-37 acted in synergy to reduce the secretion of CXC-chemokine ligand 1 (GRO-a), granulocyte colony-stimulating factor (G-CSF), and interleukin-6 (IL-6), and had an additive effect on reducing the secretion of interleukin-8 (IL-8), interferon-g inducible protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1) in response to LPS stimulation. EGCG and LL-37 acted in synergy to reduce the secretion of GRO-a, G-CSF, IL-6, IL-8, and IP-10, and had an additive effect on MCP-1 secretion. Conclusion: The combination of LL-37 and natural polyphenols from cranberry and green tea acted in synergy to reduce the secretion of several cytokines by an LPS-stimulated 3D coculture model of oral mucosal cells. Such combinations show promising results as potential adjunctive therapies for treating inflammatory periodontitis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: Volume replacement in septic patients improves hemodynamic stability. This effect can reduce the inflammatory response. The objective of this study was to evaluate the effect of 7.5% hypertonic saline solution versus 0.9% normal saline solution for volume replacement during an inflammatory response in endotoxemic rats. METHODS: We measured cytokines (serum and gut), nitrite, and lipid peroxidation (TBARS) as indicators of oxidative stress in the gut. Rats were divided into four groups: control group (C) that did not receive lipopolysaccharide; lipopolysaccharide injection without treatment (LPS); lipopolysaccharide injection with saline treatment (LPS + S); and lipopolysaccharide injection with hypertonic saline treatment (LPS + H). Serum and intestine were collected. Measurements were taken at 1.5, 8, and 24 h after lipopolysaccharide administration. RESULTS: Of the four groups, the LPS + H group had the highest survival rate. Hypertonic saline solution treatment led to lower levels of IL-6, IL-10, nitric oxide, and thiobarbituric acid reactive substances compared to 0.9% normal saline. In addition, hypertonic saline treatment resulted in a lower mortality compared to 0.9% normal saline treatment in endotoxemic rats. Volume replacement reduced levels of inflammatory mediators in the plasma and gut. CONCLUSION: Hypertonic saline treatment reduced mortality and lowered levels of inflammatory mediators in endotoxemic rats. Hypertonic saline also has the advantage of requiring less volume replacement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. After brain death (BD) donors usually experience cardiac dysfunction, which is responsible for a considerable number of unused organs. Causes of this cardiac dysfunction are not fully understood. Some authors argue that autonomic storm with severe hemodynamic instability leads to inflammatory activation and myocardial dysfunction. Objectives. To investigate the hypothesis that thoracic epidural anesthesia blocks autonomic storm and improves graft condition by reducing the inflammatory response. Methods. Twenty-eight male Wistar rats (250-350 g) allocated to four groups received saline or bupivacaine via an epidural catheter at various times in relation to brain-death induction. Brain death was induced by a sudden increase in intracranial pressure by rapid inflation of a ballon catheter in the extradural space. Blood gases, electrolytes, and lactate analyses were performed at time zero, and 3 and 6 hours. Blood leukocytes were counted at 0 and 6 hours. After 6 hours of BD, we performed euthanasia to measure vascular adhesion molecule (VCAM)-1, intracellular adhesion molecule (ICAM)-1, interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha, Bcl-2 and caspase-3 on cardiac tissue. Results. Thoracic epidural anesthesia was effective to block the autonomic storm with a significant difference in mean arterial pressure between the untreated (saline) and the bupivacaine group before BD (P < .05). However, no significant difference was observed for the expressions of VCAM-1, ICAM-1, TNF-alpha, IL-1 beta, Bcl-2, and caspase-3 (P > .05). Conclusion. Autonomic storm did not seem to be responsible for the inflammatory changes associated with BD; thoracic epidural anesthesia did not modify the expression of inflammatory mediators although it effectively blocked the autonomic storm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and Objective Muscle regeneration is a complex phenomenon, involving coordinated activation of several cellular responses. During this process, oxidative stress and consequent tissue damage occur with a severity that may depend on the intensity and duration of the inflammatory response. Among the therapeutic approaches to attenuate inflammation and increase tissue repair, low-level laser therapy (LLLT) may be a safe and effective clinical procedure. The aim of this study was to evaluate the effects of LLLT on oxidative/nitrative stress and inflammatory mediators produced during a cryolesion of the tibialis anterior (TA) muscle in rats. Material and Methods Sixty Wistar rats were randomly divided into three groups (n?=?20): control (BC), injured TA muscle without LLLT (IC), injured TA muscle submitted to LLLT (IRI). The injured region was irradiated daily for 4 consecutive days, starting immediately after the lesion using a AlGaAs laser (continuous wave, 808?nm, tip area of 0.00785?cm2, power 30?mW, application time 47?seconds, fluence 180?J/cm2; 3.8?mW/cm2; and total energy 1.4?J). The animals were sacrificed on the fourth day after injury. Results LLLT reduced oxidative and nitrative stress in injured muscle, decreased lipid peroxidation, nitrotyrosine formation and NO production, probably due to reduction in iNOS protein expression. Moreover, LLLT increased SOD gene expression, and decreased the inflammatory response as measured by gene expression of NF-k beta and COX-2 and by TNF-a and IL-1 beta concentration. Conclusion These results suggest that LLLT could be an effective therapeutic approach to modulate oxidative and nitrative stress and to reduce inflammation in injured muscle. Lasers Surg. Med. 44: 726735, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Squamous cell carcinoma (SCC) is one of the most common human cancers worldwide. In SCC, tumour development is accompanied by an immune response that leads to massive tumour infiltration by inflammatory cells, and consequently, local and systemic production of cytokines, chemokines and other mediators. Studies in both humans and animal models indicate that imbalances in these inflammatory mediators are associated with cancer development. Methods: We used a multistage model of SCC to examine the involvement of elastase (ELA), myeloperoxidase (MPO), nitric oxide (NO), cytokines (IL-6, IL-10, IL-13, IL-17, TGF-β and TNF-α), and neutrophils and macrophages in tumour development. ELA and MPO activity and NO, IL-10, IL −17, TNF-α and TGF-β levels were increased in the precancerous microenvironment. Results: ELA and MPO activity and NO, IL-10, IL −17, TNF-α and TGF-β levels were increased in the precancerous microenvironment. Significantly higher levels of IL-6 and lower levels of IL-10 were detected at 4 weeks following 7,12-Dimethylbenz(a)anthracene (DMBA) treatment. Similar levels of IL-13 were detected in the precancerous microenvironment compared with control tissue. We identified significant increases in the number of GR-1+ neutrophils and F4/80+/GR-1- infiltrating cells in tissues at 4 and 8 weeks following treatment and a higher percentage of tumour-associated macrophages (TAM) expressing both GR-1 and F4/80, an activated phenotype, at 16 weeks. We found a significant correlation between levels of IL-10, IL-17, ELA, and activated TAMs and the lesions. Additionally, neutrophil infiltrate was positively correlated with MPO and NO levels in the lesions. Conclusion: Our results indicate an imbalance of inflammatory mediators in precancerous SCC caused by neutrophils and macrophages and culminating in pro-tumour local tissue alterations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Triggering receptor expressed on myeloid cells-1 (TREM-1) potently amplifies acute inflammatory responses by enhancing degranulation and secretion of proinflammatory mediators. Here we demonstrate that TREM-1 is also crucially involved in chronic inflammatory bowel diseases (IBD). Myeloid cells of the normal intestine generally lack TREM-1 expression. In experimental mouse models of colitis and in patients with IBD, however, TREM-1 expression in the intestine was upregulated and correlated with disease activity. TREM-1 significantly enhanced the secretion of relevant proinflammatory mediators in intestinal macrophages from IBD patients. Blocking TREM-1 by the administration of an antagonistic peptide substantially attenuated clinical course and histopathological alterations in experimental mouse models of colitis. This effect was also seen when the antagonistic peptide was administered only after the first appearance of clinical signs of colitis. Hence, TREM-1-mediated amplification of inflammation contributes not only to the exacerbation of acute inflammatory disorders but also to the perpetuation of chronic inflammatory disorders. Furthermore, interfering with TREM-1 engagement leads to the simultaneous reduction of production and secretion of a variety of pro-inflammatory mediators such as TNF, IL-6, IL-8 (CXCL8), MCP-1 (CCL2), and IL-1beta. Therefore, TREM-1 may also represent an attractive target for the treatment of chronic inflammatory disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND The brain's inflammatory response to the infecting pathogen determines the outcome of bacterial meningitis (BM), for example, the associated mortality and the extent of brain injury. The inflammatory cascade is initiated by the presence of bacteria in the cerebrospinal fluid (CSF) activating resident immune cells and leading to the influx of blood derived leukocytes. To elucidate the pathomechanisms behind the observed difference in outcome between different pathogens, we compared the inflammatory profile in the CSF of patients with BM caused by Streptococcus pneumonia (n = 14), Neisseria meningitidis (n = 22), and Haemophilus influenza (n = 9). METHODS CSF inflammatory parameters, including cytokines and chemokines, MMP-9, and nitric oxide synthase activity, were assessed in a cohort of patients with BM from Burkina Faso. RESULTS Pneumococcal meningitis was associated with significantly higher CSF concentrations of IFN-γ , MCP-1, and the matrix-metalloproteinase (MMP-) 9. In patients with a fatal outcome, levels of TNF-α, IL-1 β, IL-1RA, IL-6, and TGF-α were significantly higher. CONCLUSION The signature of pro- and anti-inflammatory mediators and the intensity of inflammatory processes in CSF are determined by the bacterial pathogen causing bacterial meningitis with pneumococcal meningitis being associated with a higher case fatality rate than meningitis caused by N. meningitidis or H. influenzae.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Staphylococcus aureus is a major mastitis-causing pathogen in dairy cows. The latex agglutination-based Staphaurex test allows bovine S. aureus strains to be grouped into Staphaurex latex agglutination test (SLAT)-negative [SLAT(-)] and SLAT-positive [SLAT(+)] isolates. Virulence and resistance gene profiles within SLAT(-) isolates are highly similar, but differ largely from those of SLAT(+) isolates. Notably, specific genetic changes in important virulence factors were detected in SLAT(-) isolates. Based on the molecular data, it is assumed that SLAT(+) strains are more virulent than SLAT(-) strains. The objective of this study was to investigate if SLAT(-) and SLAT(+) strains can differentially induce an immune response with regard to their adhesive capacity to epithelial cells in the mammary gland and in turn, could play a role in the course of mastitis. Primary bovine mammary epithelial cells (bMEC) were challenged with suspensions of heat inactivated SLAT(+) (n = 3) and SLAT(-) (n = 3) strains isolated from clinical bovine mastitis cases. After 1, 6, and 24 h, cells were harvested and mRNA expression of inflammatory mediators (TNF-α, IL-1β, IL-8, RANTES, SAA, lactoferrin, GM-CSF, COX-2, and TLR-2) was evaluated by reverse transcription and quantitative PCR. Transcription (ΔΔCT) of most measured factors was induced in challenged bMEC for 6 and 24 h. Interestingly, relative mRNA levels were higher (P<0.05) in response to SLAT(+) compared to SLAT(-) strains. In addition, adhesion assays on bMEC also showed significant differences between SLAT(+) and SLAT(-) strains. The present study clearly shows that these two S. aureus strain types cause a differential immune response of bMEC and exhibit differences in their adhesion capacity in vitro. This could reflect differences in the severity of mastitis that the different strain types may induce.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single pro-inflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could well be explained by the widespread gene expression dysregulation known as "genomic storm" in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this "storm". Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some pro-inflammatory molecules, complement components and endogenous "danger" signals. The improved survival in endotoxemia was associated with serum levels of pro-inflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. Cancer cachexia is a common syndrome complex in cancer, occurring in nearly 80% of patients with advanced cancer and responsible for at least 20% of all cancer deaths. Cachexia is due to increased resting energy expenditure, increased production of inflammatory mediators, and changes in lipid and protein metabolism. Non-steroidal anti-inflammatory drugs (NSAIDs), by virtue of their anti-inflammatory properties, are possibly protective against cancer-related cachexia. Since cachexia is also associated with increased hospitalizations, this outcome may also show improvement with NSAID exposure. ^ Design. In this retrospective study, computerized records from 700 non-small cell lung cancer patients (NSCLC) were reviewed, and 487 (69.57%) were included in the final analyses. Exclusion criteria were severe chronic obstructive pulmonary disease, significant peripheral edema, class III or IV congestive heart failure, liver failure, other reasons for weight loss, or use of research or anabolic medications. Information on medication history, body weight and hospitalizations was collected from one year pre-diagnosis until three years post-diagnosis. Exposure to NSAIDs was defined if a patient had a history of being treated with NSAIDs for at least 50% of any given year in the observation period. We used t-test and chi-square tests for statistical analyses. ^ Results. Neither the proportion of patients with cachexia (p=0.27) nor the number of hospitalizations (p=0.74) differed among those with a history of NSAID use (n=92) and those without (n=395). ^ Conclusions. In this study, NSAID exposure was not significantly associated with weight loss or hospital admissions in patients with NSCLC. Further studies may be needed to confirm these observations.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several mechanisms have been identified that may underlie inflammation-induced sensitization of high-threshold primary afferent neurons, including the modulation of voltage- and Ca2+-dependent ion channels and ion channels responsible for the production of generator potentials. One such mechanism that has recently received a lot of attention is the modulation of a tetrodotoxin (TTX)-resistant voltage-gated Na+ current. Evidence supporting a role for TTX-resistant Na+ currents in the sensitization of primary afferent neurons and inflammatory hyperalgesia is reviewed. Such evidence is derived from studies on the distribution of TTX-resistant Na+ currents among primary afferent neurons and other tissues of the body that suggest that these currents are expressed only in a subpopulation of primary afferent neurons that are likely to be involved in nociception. Data from studies on the biophysical properties of these currents suggest that they are ideally suited to mediate the repetitive discharge associated with prolonged membrane depolarizations. Data from studies on the effects of inflammatory mediators and antinociceptive agents on TTX-resistant Na+ currents suggest that modulation of these currents is an underlying mechanism of primary afferent neuron sensitization. In addition, the second-messenger pathways underlying inflammatory mediator-induced modulation of these currents appear to underlie inflammatory mediator-induced hyperalgesia. Finally, recent antisense studies have also yielded data supporting a role for TTX-resistant Na+ currents in inflammatory hyperalgesia. Although data from these studies are compelling, data presented at the Neurobiology of Pain colloquium raised a number of interesting questions regarding the role of TTX-resistant Na+ currents in inflammatory hyperalgesia; implications of three of these questions are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inflammatory pain manifests as spontaneous pain and pain hypersensitivity. Spontaneous pain reflects direct activation of specific receptors on nociceptor terminals by inflammatory mediators. Pain hypersensitivity is the consequence of early posttranslational changes, both in the peripheral terminals of the nociceptor and in dorsal horn neurons, as well as later transcription-dependent changes in effector genes, again in primary sensory and dorsal horn neurons. This inflammatory neuroplasticity is the consequence of a combination of activity-dependent changes in the neurons and specific signal molecules initiating particular signal-transduction pathways. These pathways phosphorylate membrane proteins, changing their function, and activate transcription factors, altering gene expression. Two distinct aspects of sensory neuron function are changed as a result of these processes, basal sensitivity, or the capacity of peripheral stimuli to evoke pain, and stimulus-evoked hypersensitivity, the capacity of certain inputs to generate prolonged alterations in the sensitivity of the system. Posttranslational changes largely alter basal sensitivity. Transcriptional changes both potentiate the system and alter neuronal phenotype. Potentiation occurs as a result of the up-regulation in the dorsal root ganglion of centrally acting neuromodulators and simultaneously in the dorsal horn of their receptors. This means that the response to subsequent inputs is augmented, particularly those that induce stimulus-induced hypersensitivity. Alterations in phenotype includes the acquisition by A fibers of neurochemical features typical of C fibers, enabling these fibers to induce stimulus-evoked hypersensitivity, something only C fiber inputs normally can do. Elucidation of the molecular mechanisms responsible provides new opportunities for therapeutic approaches to managing inflammatory pain.