951 resultados para Hydroxyl radical formation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lanthanide(II) complexes La(B)(acac)(3)] (1-3) and Gd(B)(acac)(3)] (4-6), where B is a N,N-donor phenanthroline base, viz., 1,10-phenanthroline (phen in 1, 4), dipyrido3,2-d:2',3'-f]quinoxaline (dpq in 2, 5) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 3, 6), have been prepared and characterized. The Gd(111) complexes 4 6 are structurally characterized by single crystal X-ray crystallography. The complexes display GdO6N2 coordination with the ligands showing bidentate chelating mode of bonding. The complexes are non-electrolytic in aqueous DMF and exhibit ligand-centered absorption bands in the UV region. The dppz complexes show a band at 380 nm in DMF. The La(111) complexes are diamagnetic. The Gd(III) complexes are paramagnetic with magnetic moment that corresponds to seven unpaired electrons. The Complexes are avid binders to calf thymus DNA giving K-b values in the range of 4.7 x 10(4) 6.1 x 10(5) M-1 with a relative binding order: 3, 6 (dppz) > 2, 5 (dpq) > 1, 4 (phen). The binding data suggest DNA surface and/or groove binding nature of the complexes. The dpq and dppz complexes efficiently cleave SC DNA to its nicked circular form in UV-A light of 365 nm via formation of both singlet oxygen (O-1(2)) and hydroxyl radical (HO center dot) species. The dppz complexes 3 and 6 exhibit significant PDT effect in He La cervical cancer cells giving respective IC50 value of 460(+/- 50) and 530(+/- 30) nM in UV-A light of 365 rim, and are essentially non-toxic in dark with an IC50 value of >100 mu M. The dppz ligand alone is cytotoxic in dark and UV-A light. A significant decrease in the dark toxicity of the dppz base is observed on binding to the Ln(III) ion while retaining its photocytotoxicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lanthanide(III) complexes [Ln(pyphen)(acac)(2)(NO3)] (1, 2), [Ln(pydppz)(acac)(2)(NO3)] (3, 4) and [La(pydppz)(anacac)(2)(NO3)] (5), where Ln is La(III) (in 1, 3, 5) and Gd(III) (in 2, 4), pyphen is 6-(2-pyridyl)-1,10-phenanthroline, pydppz is 6-(2-pyridyl)-dipyrido[3,2-a:2',3'-c] phenazine, anacac is anthracenylacetylacetonate and acac is acetylacetonate, were prepared, characterized and their DNA photocleavage activity and photocytotoxicity studied. The crystal structure of complex 2 displays a GdO6N3 coordination. The pydppz complexes 3-5 show an electronic spectral band at similar to 390 nm in DMF. The La(III) complexes are diamagnetic, while the Gd(III) complexes are paramagnetic with seven unpaired electrons. The molar conductivity data suggest 1 : 1 electrolytic nature of the complexes in aqueous DMF. They are avid binders to calf thymus DNA giving K-b in the range of 5.4 10(4)-1.2 x 10(6) M-1. Complexes 3-5 efficiently cleave supercoiled DNA to its nicked circular form in UV-A light of 365 nm via formation of singlet oxygen (O-1(2)) and hydroxyl radical (HO center dot) species. Complexes 3-5 also exhibit significant photocytotoxic effect in HeLa cancer cells giving respective IC50 value of 0.16(+/- 0.01), 0.15(+/- 0.01) and 0.26 +/-(0.02) mu M in UV-A light of 365 nm, while they are less toxic in dark with an IC50 value of >3 mu M. The presence of an additional pyridyl group makes the pydppz complexes more photocytotoxic than their dppz analogues. FACS analysis of the HeLa cells treated with complex 4 shows apoptosis as the major pathway of cell death. Nuclear localization of complex 5 having an anthracenyl moiety as a fluorophore is evidenced from the confocal microscopic studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A variety of short-lived, reactive chemical species (i.e. free radicals and excited state species) are known to be photochemically produced in natural waters. Some of these transients may strongly affect chemical and biological processes, and they have been implicated in the degradation of organic pollutants and natural organic compounds in aqueous environments. Previous studies demonstrated that the highly reactive hydroxyl radical (OH) is photochemically formed in seawater. However, the quantitative importance of this key species in the sea has not been previously studied because of past analytical limitations. By using a highly sensitive probe based on α-H atom abstraction from methanol, we were able to measure production rates and steady-state concentrations of photochemically produced OH radicals in coastal and open ocean seawater and freshwaters. The validity of the method was tested by intercalibrating with an independent, OH-specific reaction, hydroxylation of benzoic acid, and also by competition kinetics experiments. Our OH production rates and steady-state concentrations for freshwaters are in excellent agreement with those measured by previous investigators for similar waters. In contrast, for seawater, the values we measured are 1–3 orders of magnitude higher than previously predicted by models, indicating that there is a major unknown photochemical OH source (s) in seawater.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three organoselenium-containing derivatives of beta-cyclodextrins (beta-CD), mono-6-benzylseleno-6-deoxy-beta-cyclodextrin (compound 1), 6,6'-trimethylenediseleno bridged beta-cyclodextrin dimer(compound 2) and 6,6'- (o-phenylene)diseleno bridged beta-cyclodextrin dimer (compound 3) functioned as mimics of selenium-containing glutathione peroxidase(SeGPX). Acting on H2O2 and GSH, the SeGPX activities of these compounds were 0.83-, 0.26-, and 1. 23-fold of that of Ebselen (0.99 U/mu mol), respectively. The relationship between the structure and the function of these compounds was studied. The results suggested that the hydrophobicity and rigidity of phenyl group is the main reason that accounted for the higher activity of compounds 3 and 1. Phenyl group not only provided the hydrophobic circumstance which is necessary for the catalytic function of selenium, but also make it possible that the cyclodextrin unit of compounds 1 and 3 combines the substrate with a more effective direction. Fluorometric techniques were utilized to determine the yields of the hydroxyl radical produced by Fenton reactions through the formation of hydroxy benzoic acids from benzoate. Compared with Ebselen which showed a significant inhibition effect on the formation of HO., these organoselenium-containing cyclodextrins showed a little scavenging effect on the formation of HO. throughout the whole process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reaction of hydrogen peroxide with cytochrome c makes them coupled to lead to the hydroxylation of 4-nitrophenol. In situ electrochemical probe was used to detect the hydroxylation of 4-nitrophenol, which can avoid the tedious extraction procedure, the loss of the active species and the interference of some colored substances in the detection of 4-nitrocatechol by spectroscopic method. The hydroxyl radical scavengers mannitol and sodium benzoate did not eliminate hydroxylation, but the inhibitory effect of uric acid on the hydroxylation lead to the formation of the ferryl species of the protein during the reaction. These studies suggest that the electrochemical probe might efficiently detect the trace 4-nitrocatechol from the onset of the hydroxylation reaction and thus provides a more sensitive tool.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum (R. esculentum) was assayed including superoxide anion radical and hydroxyl radical scavenging. The protein samples showed strong scavenging activity on superoxide anion radical and values EC50 of full protein (FP), first fraction (IFF), second fraction (SF), and 30% (NH4)(2)SO4 precipitate (Fr-1) were 2.65, 7.28, 1.10, and 22.51 mu g/mL, respectively, while values EC50 of BHA, BHT, and alpha-tocopherol were 31, 6 1, and 88 pg/mL, respectively. Also, the protein samples had strong scavenging effect on hydroxyl radical and the values EC50 of FP, FF, SF, Fr-1, and Fr-2 were 48.91, 27.72, 1.82, 16.36, and 160.93 mu g/mL, but values EC50 of Vc and mannitol were 1907 and 4536 mu g/mL, respectively. Of the five protein samples, SF had the strongest radical scavenging activity and may have a use as a possible supplement in the food and pharmaceutical industries. The radical scavenging activity was stable at high temperature so that R. esculentum may be used as a kind of natural functional food. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chitosan (CS) with two different molecular weights was modified by reacting with 4-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride or 2-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride to give new 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-di-sulfanimide)-chitosan (2-HCBSAHCS, 2-HCBSALCS, 4-HCBSAHCS, 4-HCBSALCS). The structure of the derivatives was characterized by FT-IR and C-13 NMR spectroscopy. The antioxidant activities of the derivatives were investigated employing various established systems, such as hydroxyl radical ((OH)-O-center dot)/superoxide anion (O-2(radical anion)) scavenging/reducing power and chelating activity. All the derivatives showed stronger scavenging activity on hydroxyl radical than chitosan and ascorbic acid (Vc), and IC50 of 4-HCBSAHCS, 4-HCBSALCS, 2-HCBSAHCS and 2-HCBSALCS was 0.334, 0.302, 0.442, 0.346 mg/mL, respectively. The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were strong. The results showed that the superoxide radical scavenging effect of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan was higher than chitosan. The derivatives had obviously reducing power and slight chelating activity. The data obtained in in vitro models clearly establish the antioxidant potency of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan. (C) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gas-phase photocatalysis of 1,4-dichlorobut-2-enes and 3,4-dichlorobut-1-ene (DCB) has been studied using TiO2 and 3%WO3/TiO2 supported on SiO2. DCB was found to oxidize efficiently over these catalysts; however, only low rates of CO2 formation were observed. With these chlorinated hydrocarbons, the catalysts were found to deactivate over time, probably via the formation of aldol condensation products of chloroacetaldehyde, which is the predominant intermediate observed. The variation in rate and selectivity of the oxidation reactions with O-2 concentration is reported and a mechanism is proposed. Using isotope ratio mass spectrometry, the initial step for the DCB removal has been shown not to be a carbon bond cleavage but is likely to be hydroxyl radical addition to the carbon-carbon double bond.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Peroxy radicals were measured onboard two scientific aircrafts during the AMMA (African Monsoon Multidisciplinary Analysis) campaign in summer 2006. This paper reports results from the flight on 16 August 2006 during which measurements of HO2 by laser induced fluorescence spectroscopy at low pressure (LIF-FAGE) and total peroxy radicals (RO2* = HO2+ΣRO2, R = organic chain) by two similar instruments based on the peroxy radical chemical amplification (PeRCA) technique were subject of a blind intercomparison. The German DLR-Falcon and the British FAAM-BAe-146 flew wing tip to wing tip for about 30 min making concurrent measurements on 2 horizontal level runs at 697 and 485 hPa over the same geographical area in Burkina Faso. A full set of supporting measurements comprising photolysis frequencies, and relevant trace gases like CO, NO, NO2, NOy, O3 and a wider range of VOCs were collected simultaneously. Results are discussed on the basis of the characteristics and limitations of the different instruments used. Generally, no data bias are identified and the RO2* data available agree quite reasonably within the instrumental errors. The [RO2*]/[HO2] ratios, which vary between 1:1 and 3:1, as well as the peroxy radical variability, concur with variations in photolysis rates and in other potential radical precursors. Model results provide additional information about dominant radical formation and loss processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In spite of the many studies on protein modifications by reactive species, knowledge about the products resulting from the oxidation of protein-aromatic residues, including protein-derived radicals and their stable products, remains limited. Here, we compared the oxidative modifications promoted by peroxynitrite and myeloperoxidase/hydrogen peroxide/nitrite in two model proteins, ribonuclease (6Tyr) and lysozyme (3Tyr/6Trp). The formation of protein-derived radicals and products was higher at pH 5.4 and 7.4 for myeloperoxidase and peroxynitrite, respectively. The main product was 3-nitro-Tyr for both proteins and oxidants. Lysozyme rendered similar yields of nitro-Trp, particularly when oxidized by peroxynitrite. Hydroxylated and dimerized products of Trp and Tyr were also produced, but in lower yields. Localization of the main modified residues indicates that peroxynitrite decomposes to radicals within the proteins behaving less specifically than myeloperoxidase. Nitrogen dioxide is emphasized as an important protein modifier. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The alginic acid or alginates are acidic polysaccharides found in brown seaweed widely used in food, cosmetic, medical and pharmaceutical industry. This paper proposes the extraction, chemical characterization and verification of the pharmacological activities of brown seaweed variegata Lobophora . The alginate was extracted from the seaweed Lobophora variegata and part was sulphated for comparative purposes. The native extract showed 42% total sugar, 65% uronic acid, 0,36 % protein and 0% of sulfate, while the sulfate showed 39% , 60%, 0.36% and 27,92 % respectively. The presence of a sulfate group may be observed by the metachromasia with toluidine blue in electrophoresis system and characteristic vibration 1262,34 cm-1 in infrared spectroscopy connections assigned to S = O. We observed the formation of films and beads of native alginate, where more concentrated solution 6% resulted in a thicker and more consistent film. Native alginate showed proliferative activity at concentrations (25 and 50 mcg), (50 mg) and (100 mg) in 3T3 cell line in 24h, 48h and 72h, respectively , as the sulfated (100 mg) in 24 . Also showed antiproliferative or cytotoxic activity in HeLa cells of strain, (25 and 100 mg), (25 and 100 mg) and (25, 50 and 100 mg), to native, now for the sulfate concentrations (100 mg) in 24 (25, 50 and 100 mg) in 48 hours, and (50 and 100 mg ) 72h. For their antioxidant activity, the sulfated alginates have better total antioxidant activity reaching 29 % of the native activity while 7.5 % of activity . For the hydroxyl radical AS showed high inhibition ( between 77-83 % ) in concentrations, but the AN surpassed these numbers in the order of 78-92 % inhibition. The reducing power of AN and AS ranged between 39-82 % . In the method of ferric chelation NA reached 100 % chelating while the AS remained at a plateau oscillating 6.5%. However, in this study , we found alginates with promising pharmacological activities, to use in various industries as an antioxidant / anti-tumor compound

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Statistics of environmental protection agencies show that the soil has been contaminated with problems often resulting from leaks, spills and accidents during exploration, refining, transportation and storage oil operations and its derivatives. These, gasoline noteworthy, verified by releasing, to get in touch with the groundwater, the compounds BTEX (benzene, toluene, ethylbenzene and xylenes), substances which are central nervous system depressants and causing leukemia. Among the processes used in remediation of soil and groundwater contaminated with organic pollutants, we highlight those that use hydrogen peroxide because they are characterized by the rapid generation of chemical species of high oxidation power, especially the hydroxyl radical ( OH), superoxide (O2 -) and peridroxil (HO2 ), among other reactive species that are capable of transforming or decomposing organic chemicals. The pH has a strong effect on the chemistry of hydrogen peroxide because the formation of different radicals directly depends on the pH of the medium. In this work, the materials MCM-41 and Co-MCM-41 were synthesized and used in the reaction of BTEX removal in aqueous media using H2O2. These materials were synthesized by the hydrothermal method and the techniques used to characterize were: XRD, TG/DTG, adsorption/desorption N2, TEM and X-Ray Fluorescence. The catalytic tests were for 5 h of reaction were carried out in reactors of 20 mL, which was accompanied by the decomposition of hydrogen peroxide by molecular absorption spectrophotometry in the UV-Vis, in addition to removal of organic compounds BTEX was performed as gas chromatography with detection photoionization and flame ionization and by static headspace sampler. The characterizations proved that the materials were successfully synthesized. The catalytic tests showed satisfactory results, and the reactions containing BTEX + Co-MCM-41 + H2O2 at pH = 12.0 had the highest percentages of removal for the compounds studied

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Der erste Teil dieser Arbeit befasst sich mit der Kinetik der Reaktion des OH-Radikals mit Glykolaldehyd (HOCH2CHO). Die Geschwindigkeitskonstante k1 wurde für diese Reaktion temperaturabhängig bestimmt. Durch gepulste Photolyse wurden OH-Radikale erzeugt. Anschließend wurde die laserinduzierte Fluoreszenz der OH-Radikale bei 309 nm detektiert. Die ermittelte Geschwindigkeitskonstante k1 für die Reaktion von OH mit HOCH2CHO von (8,0 ± 0,8) x 10-12 cm3 Teilchen-1 s-1 erweist sich für den Temperaturbereich von 240 K < T < 362 K als temperaturunabhängig. Zwischen 60 und 250 Torr kann zudem keine Druckabhängigkeit für k1 beobachtet werden. Die unerwartet niedrigere Geschwindigkeitskonstante für die betrachtete Reaktion im Vergleich zur Reaktion von OH mit CH3CHO konnte anhand von Überlegungen zur Korrelation zwischen der C-H-Bindungsstärke und dem H-Abstraktionskanal erklärt werden. Im zweiten Teil dieser Arbeit wurde die Photochemie von Aceton (CH3C(O)CH3), Methylethylketon (C2H5C(O)CH3, MEK) und Acetylbromid (CH3C(O)Br) betrachtet. Für die Photolyse von Aceton (bei 248 nm und 266 nm), MEK (bei 248 nm) und Acetylbromid (bei 248 nm) wurden bei 298 ± 3 K druckabhängig zwischen 5 und 1600 Torr N2 Quantenausbeuten für die Methylbildung (Phi(CH3)) bestimmt. Nach gepulster Photolyse der betrachteten Moleküle wurden die transienten Absorptionssignale der Methylradikale bei 216,4 nm verfolgt. Die Quantenausbeuten wurden relativ zur Photolyse von Methyliodid (CH3I) unter gleichen Reaktionsbedingungen ermittelt. Die erhaltenen Quantenausbeuten für CH3-Radikale nehmen für die beiden Systeme Aceton / 248 nm (Phi(CH3, Aceton) = 1,42 – 0,99) und MEK / 248 nm (Phi(CH3, MEK) = 0,45 – 0,19) druckabhängig zu hohen Drücken ab. Die Druckabhängigkeit von Phi(CH3) wird auf die Konkurrenz zwischen Stoßrelaxation und Dissoziation der schwingungsangeregten Acetylradikale (CH3CO#) zurückgeführt. Für das System Aceton / 266 nm wird keine Druckabhängigkeit von Phi(CH3) = 0,93 ± 0,1 beobachtet. Dies wird damit erklärt, dass CH3CO# nicht genügend Energie besitzt, um die Barriere zur Dissoziation zu überschreiten. Bei der Photolyse von Acetylbromid bei 248 nm wird druckunabhängig Phi(CH3) = 0,92 ± 0,10 bestimmt. In diesem System dissoziieren die schwingungsangeregten Acetylradikale bei allen Drücken vollständig. Bei 266 nm wurde die Gesamtquantenausbeute für die Photodissoziation von Aceton (Phi(diss, 266nm)) bestimmt. Die nach Photolyse erhaltenen Methyl - und Acetylradikale wurden nach Titration mit Br2 durch die Resonanzfluoreszenz der Bromatome detektiert. Phi(diss, 266nm) wurde mit 0,92 ± 0,07 bestimmt.