971 resultados para Hydrostatic pressure
Resumo:
Given the high susceptibility of baby spinach leaves to thermal processing, the use of high hydrostatic pressure (HHP) is explored as a non-thermal blanching method. The effects of HHP were compared with thermal blanching by following residual activity of polyphenol oxidases and peroxidases, colour retention, chlorophyll and carotenoids content, antioxidant capacity and total polyphenols content. Spinach subjected to 700 MPa at 20 ºC for 15 min represented the best treatment among the conditions studied due to its balanced effect on target enzymes and quality indices. The latter treatment reduced enzyme activities of polyphenol oxidases and peroxidases by 86.4 and 76.7 %, respectively. Furthermore, leaves did not present changes in colour and an increase by 13.6 % and 15.6 % was found in chlorophyll and carotenoids content, respectively; regarding phytochemical compounds, retentions of 28.2 % of antioxidant capacity and 77.1 % of polyphenols content were found. Results demonstrated that HHP (700 MPa) at room temperature, when compared with thermal treatments, presented better retention of polyphenols, not significantly different chlorophyll and carotenoids content and no perceptible differences in the instrumental colour evaluated through ΔE value; therefore, it can be considered a realistic practical alternative to the widely used thermal blanching.
Resumo:
The effect of milk processing on rheological and textural properties of probiotic low-fat yogurt (fermented by two different starter cultures) was studied. Skim milk fortified with skim milk powder was subjected to three treatments: (1) thermal treatment at 85C for 30 min; (2) high hydrostatic pressure (HHP) at 676 MPa for 5 min; and (3) combined treatments of HHP (676 MPa for 5 min) and heat (85C for 30 min). The processed milk was fermented using two different starter cultures containing Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus and Bifidobacterium longum at inoculation rates of 0.1 and 0.2%. Rheological parameters were determined and a texture profile analysis was carried out. Yogurts presented different rheological behaviors according to the treatment used, which could be attributed to structural phenomena. The combined HHP and heat treatment of milks resulted in yogurt gels with higher consistency index values than gels obtained from thermally treated milk. The type of starter culture and inoculation rate, providing different fermentation pathways, also affected the consistency index and textural properties significantly. The combined HHP and heat treatment of milks before fermentation, and an inoculation rate of 0.1% (for both cultures), led to desirable rheological and textural properties in yogurt, which presented a creamy and thick consistency that does not require the addition of stabilizers.
Resumo:
The effect of milk processing on the microstructure of probiotic low-fat yogurt was studied. Skim milk fortified with skim milk powder was subjected to three treatments prior to innoculation: thermal treatment at 85 degrees C for 30 min, high hydrostatic pressure at 676 MPa for 5 min, and combined treatments of high hydrostatic pressure (HHP) and heat. The processed milk was then fermented by using two different starter cultures containing Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Bifidobacterium longum. The microstructure of heat-treated milk yogurt had fewer interconnected chains of irregularly shaped casein micelles, forming a network that enclosed the void spaces. on the other hand, microstructure of HHP yogurt had more interconnected clusters of densely aggregated protein of reduced particle size, with an appearance more spherical in shape, exhibiting a smoother more regular surface and presenting more uniform size distribution. The combined HHP and heat milk treatments led to compact yogurt gels with increasingly larger casein micelle clusters interspaced by void spaces, and exhibited a high degree of cross-linking. The rounded micelles tended to fuse and form small irregular aggregates in association with clumps of dense amorphous material, which resulted in improved gel texture and viscosity. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The influence of high hydrostatic pressure (HHP) on Pêra Rio orange juice was investigated using response surface methodology. A central composite design was used to evaluate the effects of three processing conditions (independent variables), namely pressure (100-600 MPa), temperature (30-60 °C) and time (30-360 s), on the native microflora and pectin methylesterase (PME) activity of orange juice. Analysis of variance showed that second-order polynomial models fitted well with the experimental data for PME residual activity (R2 = 0.9586, p < 0.001) and aerobic microorganism count (R2 = 0.9879, p < 0.001). The optimum HHP processing conditions to produce orange juice with PME residual activity of less than 20 % and low microorganism count (<2 log cycles CFU/mL) were 550 to 600 MPa, 55 to 60 °C and 330 to 360 s. © 2013 Springer Science+Business Media New York.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work aimed to explore evaluated the effects of the increased of hydrostatic pressure on a defined bacterial community on aggregates formed from an axenic culture of marine diatoms by simulating sedimentation to the deep sea by increase of hydrostatic pressure up to 30 bar (equivalent to 3000 m water depth) against control at ambient surface pressure. Our hypothesis was that microbial colonization and community composition and thus microbial OM turnover is greatly affected by changes in hydrostatic pressure during sinking to the deep ocean.
Resumo:
Thermorheological changes in high hydrostatic pressure (HHP)-treated chickpea flour (CF) slurries were studied as a function of pressure level (0.1, 150, 300, 400, and 600 MPa) and slurry concentration (1:5, 1:4, 1:3, and 1:2 flour-to-water ratios). HHP-treated slurries were subsequently analyzed for changes in properties produced by heating, under both isothermal and non-isothermal processes. Elasticity (G′) of pressurized slurry increased with pressure applied and concentration. Conversely, heat-induced CF paste gradually transformed from solid-like behavior to liquid-like behavior as a function of moisture content and pressure level. The G′ and enthalpy of the CF paste decreased with increasing pressure level in proportion with the extent of HHP-induced starch gelatinization. At 25 °C and 15 min, HHP treatment at 450 and 600 MPa was sufficient to complete gelatinization of CF slurry at the lowest concentration (1:5), while more concentrated slurries would require higher pressures and temperature during treatment or longer holding times. Industrial relevance Demand for chickpea gel has increased considerably in the health and food industries because of its many beneficial effects. However, its use is affected by its very difficult handling. Judicious application of high hydrostatic pressure (HHP) at appropriate levels, adopted as a pre-processing instrument in combination with heating processes, is presented as an innovative technology to produce a remarkable decrease in thermo-hardening of heat-induced chickpea flour paste, permitting the development of new chickpea-based products with desirable handling properties and sensory attributes.
Resumo:
The aim of this work is to evaluate the influence of S. pombe and T. delbrueckii species on the sensory quality of red wine when used in sequential and mixed fermentations with S. cerevisiae.
Resumo:
The inactivation of the simian immunodeficiency viruses SIVmac251 and SIVagm by pressures of 150 and 250 MPa was determined. The extent of inactivation depended on the time that the virus was subjected to compression as well as the level of the pressure and at 150 Mpa reached 5 log10 dilution units after approximately 10 hr. The inactivations, which were uniformly carried out at room temperature, were independent of the concentration of the virus. Possible applications of pressure inactivation for molecular biological and clinical use are discussed.
Resumo:
The cleavage specificity of the Pvu II and BamHI restriction endonucleases is found to be dramatically reduced at elevated osmotic pressure. Relaxation in specificity of these otherwise highly accurate and specific enzymes, previously termed "star activity," is uniquely correlated with osmotic pressure between 0 and 100 atmospheres. No other colligative solvent property exhibits a uniform correlation with star activity for all of the compounds tested. Application of hydrostatic pressure counteracts the effects of osmotic pressure and restores the natural selectivity of the enzymes for their canonical recognition sequences. These results indicate that water solvation plays an important role in the site-specific recognition of DNA by many restriction enzymes. Osmotic pressure did not induce an analogous effect on the specificity of the EcoRV endonuclease, implying that selective hydration effects do not participate in DNA recognition in this system. Hydrostatic pressure was found to have little effect on the star activity induced by changes in ionic strength, pH, or divalent cation, suggesting that distinct mechanisms may exist for these observed alterations in specificity. Recent evidence has indicated that BamHI and EcoRI share similar structural motifs, while Pvu II and EcoRV belong to a different structural family. Evidently, the use of hydration water to assist in site-specific recognition is a motif neither limited to nor defined by structural families.
Resumo:
We experimentally characterized a birefringent microstructured polymer fiber of specific construction, which allows for single mode propagation in two cores separated by a pair of large holes. The fiber exhibits high birefringence in each of the cores as well as relatively weak coupling between the cores. Spectral dependence of the group and the phase modal birefringence was measured using an interferometric method. We have also measured the sensing characteristics of the fiber such as polarimetric sensitivity to hydrostatic pressure, strain and temperature. Moreover, we have studied the effect of hydrostatic pressure and strain on coupling between the cores.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
We experimentally characterized a birefringent microstructured polymer fiber of specific construction, which allows for single mode propagation in two cores separated by a pair of large holes. The fiber exhibits high birefringence in each of the cores as well as relatively weak coupling between the cores. Spectral dependence of the group and the phase modal birefringence was measured using an interferometric method. We have also measured the sensing characteristics of the fiber such as the polarimetric sensitivity to hydrostatic pressure and temperature. © 2010 SPIE.