295 resultados para Hydrazine, N-acetylcysteine
Resumo:
Chitosan (CS) with two different molecular weight were modified by reacting with methyl hydrazine-dithiocarboxylate and methyl phenylhydrazine-dithiocarboxylate to give 2-(hydrazine-thiosemicarbazone)-chitosan (2-HTCHCS, 2-HTCLCS) and 2-(phenylhydrazine-thiosemicarbazone)chitosan (2-PHTCHCS, 2-PHTCLCS). The structure of the derivatives was characterized by FT-IR spectroscopy and elemental analysis. The antioxidant activities of the derivatives were investigated employing various established systems, such as hydroxyl radical (*OH)/superoxide anion (O-2(center dot-)) scavenging/reducing power and chelating activity. All of the derivatives showed strong scavenging activity on hydroxyl radical than chitosan and ascorbic acid (Vc), and IC50 of 2-HTCHCS, 2-HTCLCS, 2-PHTCHCS and 2-PHTCLCS was 0.362, 0.263, 0.531 and 0.336 mg/mL respectively. The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were strong. The results showed that the superoxide radical scavenging effect of 2-[phenylhydrazine (or hydrazine)-thiosemicarbazone]-chitosan were higher than that of chitosan. The derivatives had obviously reducing power and chelating activity. The data obtained from vitro models clearly establish the antioxidant potency of 2-[phenylhydrazine (or hydrazine)-thiosemicarbazone]-chitosan. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Microcalorimetric studies of H-2, NH3 and O-2 adsorption, as well as the NH3 decomposition activities evaluation were used to characterize the iridium catalysts for hydrazine decomposition with different supports (Al2O3, SiO,) and iridium contents (1.8, 10.8 and 22.1%). The higher H-2 chemisorption amounts on Ir/Al2O3 catalysts than those on the corresponding Ir/SiO2 counterparts revealed that the strong interaction of iridium and Al2O3 led to higher dispersion of iridium on Ir/Al2O3 catalysts than on Ir/SiO2 catalysts. The larger increase in strong H-2 adsorption sites on highly loaded Ir/Al2O3 than the corresponding Ir/SiO2 ones could be attributed to the interaction not only between iridium atoms but also between iridium and Al2O3. The microcalorimetric results for NH3 adsorption showed that no apparent chemisorption of NH3 existed on Ir/SiO2 catalysts while NH3 chemisorption amounts increased on Ir/Al2O3 catalysts with iridium loadings, which arose from the interaction of the catalysts support of Al2O3 With chloride anion. Both highly dispersed iridium active sites and chloride anion on Ir/Al2O3 catalysts could be beneficial to the intermediate NH3 decomposition in N2H4 decomposition. The similar O-2 plots of differential heat versus normalized coverage on Ir/Al2O3 and Ir/SiO2 catalysts could not be due to the metal-support interaction, but to the formation of strong Ir-O bond. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
1,1′-Diacetylferrocene reacts with neat hydrate over a period of 72 h at 20°C to give the dihydrazone [H2NN(Me)CC5H4FeC5H4C(Me)NNH2] (6) in almost quantitative yield. Either prolonging the reaction time or reacting 6 with fresh hydrazine causes the iron to be stripped from the metallocene and bis(hydrazine)bis(hydrazinecarboxylato-N′,O) iron(II), [Fe(N2H4)2(OOCNHNH2)2] (11), crystallizes. In the presence of Ba2+ or Mo2+ ions two molecules of complex 6 react to give the cyclic diazine [N(Me)CC5H4FeC5H4C (Me)N]2 (7) in high yield. Hydrazine is liberated in this reaction. Complexes 6 and 11 have been characterized crystallographically. The cyclic voltammograms of complexes 6 and 7 contain essentially non-reversible oxidation peaks.
Resumo:
The influence of gut microbiota on the toxicity and metabolism of hydrazine has been investigated in germ-free and ‘conventional’ Sprague Dawley rats using 1H NMR based metabonomic analysis of urine and plasma. Toxicity was more severe in germ-free rats compared with conventional rats for equivalent exposures indicating that bacterial presence altered the nature or extent of response to hydrazine and that the toxic response can vary markedly in the absence of a functional microbiome.
Resumo:
Herein we describe a facile protocol for the reduction of aromatic ketones and aldehydes to the corresponding methylene unit. The procedure involves isolation of a carbomethoxyhydrazone intermediate that is easily decomposed to the reduced product without the requirement for large quantities of pernicious hydrazine.
Resumo:
Background. Obstructive nephropathy decreases renal blood flow (RBF) and glomerular filtration rate (GFR), causing tubular abnormalities, such as urinary concentrating defect, as well as increasing oxidative stress. This study aimed to evaluate the effects of N-acetylcysteine (NAC) on renal function, as well as on the protein expression of aquaporin 2 (AQP2) and endothelial nitric oxide synthase (eNOS), after the relief of bilateral ureteral obstruction (BUO). Methods. Adult male Wistar rats were divided into four groups: sham (sham operated); sham operated + 440 mg/kg body weight (BW) of NAC daily in drinking water, started 2 days before and maintained until 48 h after the surgery; BUO (24-h BUO only); BUO + NAC-pre (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started 2 days before BUO); and BUO + NAC-post (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started on the day of BUO relief). Experiments were conducted 48 h after BUO relief. Results. Serum levels of thiobarbituric reactive substances, which are markers of lipid peroxidation, were significantly lower in NAC-treated rats than in the BUO group rats. The administration of NAC provided significant protection against post-BUO GFR drops and reductions in RBF. Renal cortices and BUO rats presented decreased eNOS protein expression of eNOS in the renal cortex of BUO group rats, whereas it was partially recovered in BUO + NAC-pre group rats. Urine osmolality was significantly lower in BUO rats than in sham group rats or NAC-treated rats, the last also presenting less interstitial fibrosis. Post-BUO downregulation of AQP2 protein expression was averted in the BUO + NAC-pre group rats. Conclusions. This study demonstrates that NAC administration ameliorates the renal function impairment observed 48 h after the relief of 24-h BUO. Oxidative stress is important for the suppression of GFR, RBF, tissue AQP2 and eNOS in the polyuric phase after the release of BUO.
Resumo:
A new electrocatalytic active porphyrin nanocomposite material was obtained by electropolymerization of meso-tetra(4-sulphonatephenyl) porphyrinate manganese(III) complex (MnTPPS) in alkaline solutions containing sub-micromolar concentrations of silver chloride. The modified glassy carbon electrodes efficiently oxidize hydrazine at 10 mV versus Ag/AgCl, dramatically decreasing the overpotential of conventional carbon electrodes. The analytical characteristics of this amperometric sensor coupled with batch injection analysis (BIA) technique were explored. Wide linear dynamic range (2.5 x 10(-7) to 2.5 x 10(-4) mol L-1), good repeatability (R.S.D. = 0.84%, n = 30) and low detection (3.1 x 10(-8) mol L-1) and quantification (1.0 x 10(-7) mol L-1) limits, as well as very fast sampling frequency (60 determinations per hour) were achieved. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Flow injection analysis (FIA) with amperometric detection was employed for the quantification of N-acetylcysteine (NAC) in pharmaceutical formulations, utilizing an ordinary pyrolytic graphite (OPG) electrode modified with cobalt phthalocyanine (CoPc). Cyclic voltammetry was used in preliminary studies to establish the best conditions for NAC analysis. In FIA-amperometric experiments the OPG-CoPc electrode exhibited sharp and reproducible current peaks over a wide linear working range (5.0 x 10(-5)-1.0 x 10(-3) mol L(-1)) in 0.1 mol L(-1) NaOH solution. High sensitivity (130 mA mol(-1) cm(2)) and a low detection limit (9.0 x 10(-7) mol L(-1)) were achieved using the sensor. The repeatability (R.S.D.%) for 13 successive flow injections of a solution containing 5.0 x 10(-4) mol L(-1) NAC was 1.1%. The new procedure was applied in analyses of commercial pharmaceutical products and the results were in excellent agreement with those obtained using the official titrimetric method. The proposed amperometric method is highly suitable for quality control analyses of NAC in pharmaceuticals since it is rapid, precise and requires much less work than the recommended titrimetric method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: Avaliar o efeito da N-acetilcisteína na proteção renal contra lesão de isquemia/reperfusão, quando administrada logo após a indução anestésica, em ratos anestesiados com isoflurano. MÉTODOS: Dezoito ratos Wistar machos pesando mais que 300g foram anestesiados com isoflurano. A jugular interna direita e a carótida esquerda foram dissecadas e canuladas. Os animais foram distribuídos aleatoriamente em GAcetil, recebendo N-acetilcisteína por via intravenosa, 300mg/kg, e GIsot, solução salina. Foi realizada nefrectomia direita e clampeamento da artéria renal esquerda por 45 min. Os animais foram sacrificados após 48h, sendo colhidas amostras sanguíneas após a indução anestésica e ao sacrifício dos mesmos para avaliar a creatinina sérica. Realizou-se histologia renal. RESULTADOS: A variação da creatinina foi 2,33mg/dL ± 2,21 no GAcetil e 4,38mg/dL ± 2,13 no GIsot (p=0,074). Dois animais apresentaram necrose tubular intensa no GAcetil, comparados a cinco no GIsot. Apenas GAcetil apresentou animais livres de necrose tubular (dois) e degeneração tubular (um). CONCLUSÃO: Após isquemia/reperfusão renais, os ratos aos quais se administrou N-acetilcisteína apresentaram menor variação na creatinina sérica e lesões renais mais leves que o grupo controle.
Resumo:
Aim. Lower-limb traumatic injury associated with ischemia and followed by reperfusion (I/R) is a common severe situation in muscle lesions due to trauma and hypoxia followed by local and systemic injuries induced by oxygen-derived free radical release during reperfusion. The aim of this study was to evaluate the attenuating effects of trimetazidine (TMZ) and N-acetylcysteine (NAC) in such situation.Methods. The muscles at the root of the right hind limb of Wistar rats were cross-sectioned, preserving femoral vessels and nerves and clamping the femoral artery for four hours. The clamp was then released and the femoral artery has been reperfused for 2 hours. Rats were randomly divided in groups of ten as follows: Group 1: sham I/R, treated with saline; Group 2: I/R, treated with saline; Group 3: sham I/R, treated with TMZ (7.5 mg/kg/dose); Group 4: sham I/R, treated with NAC (375 mg/kg/dose); Group 5: I/R treated with TMZ (7.5 mg/kg/dose); Group 6: I/R treated with NAC (375 mg/kg/dose). All rats received two intravenous bolus injections of the drugs, one before ischemia and one before reperfusion. Oxidative stress in plasma (MDA, total, oxidized and reduced glutathione), creatinephosphokinase (CPK), optical and electron microscopy and pelvic extremity circumference and volume were studied.Results. No statistical differences were found between the groups for MDA or total and reduced glutathione. Oxidized glutathione increased significantly in groups 5 and 2. Limb circumference as well as limb volume increased in all groups over time, mainly in groups 5, 2 and 1. CPK increased in all groups, being highest in groups 5, 6 and 2. Histological lesions were present in all but sham groups, being less severe in group 6. Soleus muscle analyses at electron microscopy exhibit some degree of alteration in all groups.Conclusion. This experimental model simulated severe limb trauma associated with ischemia and reperfusion, and, as such, it was aggressive, causing severe injury and local inflammatory reaction. The model did not show antioxidant action from NAC, and possible antioxidant action from TMZ was insufficient to attenuate tissue injuries. [Int Angiol 2009;28:412-7]
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)