964 resultados para Heavy trivalent lanthanides
Resumo:
Solid-state compounds of general formula LnL(3).2H(2)O, where Ln is heavier trivalent lanthanides and yttrium, L is 4-chlorobenzylidenepyruvate have been synthetised.On heating these compounds decompose in steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of oxochloride (Eu, Gd); mixture of oxide and oxochloride that decrease with increasing of atomic number of metal (Tb-Tm); or oxide (Yb, Lu, Y) as final residue, up to 900degreesC. The dehydration enthalpies found for terbium, holmium, ytterbium and yttrium compounds were: 34.93, 42.40, 57.39 and 62.24 kJ mol(-1), respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Solid-state compounds Ln-4Cl-BP, where Ln represents lighter trivalent lanthanides and 4Cl-BP is 4-chlorobenzylidenepyruvate, were prepared. Thermogravimetry, derivative thermogravimetry (TG and DTG), differential scanning calorimetry (DSC) and other methods of analysis were used to characterize and to study the thermal behaviour of these compounds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Thermal decomposition of solid state compounds of lanthanide and yttrium benzoates in CO2 atmosphere
Resumo:
Solid-state Ln-Bz compounds, where Ln stands for trivalent lanthanides and Bz is benzoate have been synthesized. Simultaneous thermogravimetric and differential thermal analysis in a CO2 atmosphere were used to study the thermal decomposition of these compounds.
Resumo:
Films of chitosan with trivalent lanthanides ions Eu3+ and Tb3+ were respectively prepared in the ratio of 3:1 m/m (chitosan: lanthanide) and 6:1 m/m (chitosan: lanthanide). There were no formations of films in a ratio of 1:1 m/m (chitosan: lanthanides). The films of chitosan with the Tb3+ ion have the same transparent appearance than the pure chitosan films. The film of chitosan with Eu3+ ion has a muddy appearance. These films present good resistance to tear. The appearance of the compounds prepared in ratio 1:1m/m is a white powder. The films and compounds of chitosan were characterized by Elementary Analysis (CHN), Thermal Analysis (TG/DTG) and Spectroscopy of Luminescence. The CHN analysis was made only for compounds prepared in ratio 1:1m/m, suggesting that these compounds possess the formula QUILn.6H2O, where QUI = Chitosan and Ln = Lanthanide. The results of the curves TG/DTG indicated that there are strong interactions between Eu3+ or Tb3+ and chitosan, causing a lesser lost of mass in the films. The luminescence analysis showed that the films of chitosan with the ions Eu3+ and Tb3+ present emissions in the region of the visible one, with bands of the chitosan and of the Eu3+ ion. The luminescence analysis of the compounds of chitosan with the Eu3+ and Tb3+ ions suggest that the chitosan does not transfer into energy to the ions lanthanides, however the chemical neighborhood around of the ion lanthanides breaks the selection rules and, conseqüently the 4f-4f transitions of the lanthanide ions are observed
Thermal decomposition of solid state compounds of lanthanide and yttrium benzoates in CO2 atmosphere
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermal and spectroscopic studies on solid trivalent lanthanides and yttrium(III) α-hydroxyisobutyrates, Ln(C4H7O 3)3·nH2O were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA), elemental analysis, X-ray diffractometry, complexometry, experimental and theoretical infrared spectroscopy and TG-DSC coupled to FTIR. The dehydration of lanthanum to neodymium and terbium to thulium and yttrium compounds occurs in a single step while for samarium, europium and gadolinium ones it occurs in three consecutives steps. Ytterbium and lutetium compounds were obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occursin two consecutives steps, except lanthanum (five steps) and cerium (single step), with formation of the respective oxides CeO2, Pr6O 11, Tb4O7 and Ln2O3 (Ln = La, Nd to Lu and Y), as final residue. The resultsalso provided information concerning the composition, thermal behavior, crystallinity and gaseous products evolved during the thermal decomposition. The theoretical and experimental spectroscopic data suggested the possible modes of coordination of the ligand with the lanthanides.© 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Solid-state compounds of general formula LnL3.nH2O, in wich Ln represents lanthanum, lanthanides and yttrium, L is ketoprofen, and n = 0,5 (Pr, Sm, Tb), 1 (La, Eu, Dy, Ho, Er, Tm, Lu) e 1,5 (Ce, Nd, Gd, Yb, Y) were synthesized. Simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and EDTA complexometry were employed to characterize these compounds. The TG-DTA and DSC curves provided information concerning the thermal behaviour and thermal decomposition of synthesized compounds. The experimental and theoretical infrared spectroscopic data suggested that ketoprofen acts as a bidentate ligand towards trivalent lanthanides and yttrium (III)
Resumo:
This Final Paper had as it main goal to make a thermoanalytical study of lighter trivalent lanthanides (Lanthanum, Cerium, Praseodymium, Neodymium, Samarium and Europium) with the Ibuprofen ligand (nonsteroidal anti-inflammatory) that have a general formula LnL3.nH2O, on solid state, where Ln are the Lanthanides, L is the Ibuprofen ligand and n = number of water molecules of hydration that went from 1,0 to all the compounds. In order to characterize this compounds, it has been used the thermoanalytical techniques TG-DTA (thermogravimetry - Diferential Thermal Analysis) and DSC (Diferential Scanning Calorimetry), Fourier transformed infrared spectroscopy (FTIR) and complexometric titration with EDTA. Through the TG-DTA technique, it has been possible to set the thermal stability of the compounds, the number of thermal decomposition steps and temperatures that ocurred that also provided stoichiometry to the synthesized compounds. The DSC technique has shown the enthalpy of dehydration of the samarium and europium compounds, it was not possible to see it in the other compounds due to a endothermic peak on the DSC curve not being formed. In the case of neodymium, a thermal event ocurred, in which it could be a oxidative decarboxylation right after the dehydration. The infrared was utilised to study the carboxilate groups streches, and so, suggest a ligand metals compound coordination, that to this present paper has been a bidentade bridged coordenation. At last, the complexometric tritation was used to very the ammount of metal present in each compound, and so, verify if the proposed stoichiometry was according to the theory