997 resultados para HYDROXYPROPYL-BETA-CYCLODEXTRIN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of cyclosporine (CyA)-cyclodextrin (CD) complex incorporated within PLGA inicrospheres on microsphere characteristics, with particular emphasis on drug release kinetics. For this purpose, microspheres encapsulated with CyA and those loaded by CyA-CD complex were prepared by solvent evaporation and multiple emulsification solvent evaporation methods, respectively. Morphology, size, encapsulation efficiency and drug release pattern from microspheres were evaluated. Also, physicochemical properties of drug inside microspheres were characterized by differential scanning calorimetry (DSC) and infrared spectroscopy (IR) studies. Scanning electron microscopy (SEM) studies showed that microspheres encapsulated with CyA had islands on the microsphere surface but the islands were not seen on the surface of microspheres loaded by complex. Size range varied from 1 to 25 mu m for CyA encapsulated microspheres and 1 to 50 mu m for complex loaded microspheres. The release of CyA was biphasic with an initial more rapid release phase followed by a slower phase but drug release was twice as fast for complex loaded microspheres. IR studies did not indicate any chemical interaction between the components of microspheres and DSC thermograms revealed that CyA was present either in its amorphous state in microspheres or the presence of CyA as an inclusion complex within microspheres loaded by complex. In conclusion, using CyA as an inclusion complex with CD within microspheres can affect microsphere characteristics and drug release and it is possible to modify microsphere properties like drug release by incorporating CDs as complexing agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroxymethylnitrofurazone (NFOH) is a prodrug that is active against Trypanosoma cruzi. It however presents low solubility and high toxicity. Hydroxypropyl-beta-cyclodextrin (HP-beta-CD) can be used as a drug-delivery system for NFOH modifying its physico-chemical properties. The aim of this work is to characterize the inclusion complex between NFOH and HP-beta-CD. The rate of NFOH release decreases after complexation and thermodynamic parameters from the solubility isotherm studies revealed that a stable complex is formed (deltaGº= 1.7 kJ/mol). This study focuses on the physico-chemical characterization of a drug-delivery formulation that comes out as a potentially new therapeutic option for Chagas disease treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosomiasis is still an endemic disease in many regions, with 250 million people infected with Schistosoma and about 500,000 deaths per year. Praziquantel (PZQ) is the drug of choice for schistosomiasis treatment, however it is classified as Class II in the Biopharmaceutics Classification System, as its low solubility hinders its performance in biological systems. The use of cyclodextrins is a useful tool to increase the solubility and bioavailability of drugs. The aim of this work was to prepare an inclusion compound of PZQ and methyl-beta-cyclodextrin (MeCD), perform its physico-chemical characterization, and explore its in vitro cytotoxicity. SEM showed a change of the morphological characteristics of PZQ:MeCD crystals, and IR data supported this finding, with changes after interaction with MeCD including effects on the C-H of the aromatic ring, observed at 758 cm(-1). Differential scanning calorimetry measurements revealed that complexation occurred in a 1:1 molar ratio, as evidenced by the lack of a PZQ transition temperature after inclusion into the MeCD cavity. In solution, the PZQ UV spectrum profile in the presence of MeCD was comparable to the PZQ spectrum in a hydrophobic solvent. Phase solubility diagrams showed that there was a 5.5-fold increase in PZQ solubility, and were indicative of a type A(L) isotherm, that was used to determine an association constant (K(a)) of 140.8 M(-1). No cytotoxicity of the PZQ:MeCD inclusion compound was observed in tests using 3T3 cells. The results suggest that the association of PZQ with MeCD could be a good alternative for the treatment of schistosomiasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photochemistry and photophysics of 4-chlorophenol (4-CP) were studied onto two model solid supports, silicalite and beta-cyclodextrin (beta-Cl)), using time resolved diffuse reflectance techniques and product degradation analysis. The results have shown that the photochemistry and photophysics of 4-CP are different from solution and depend on the solid. Ground state diffuse reflectance and time resolved luminescence demonstrated the inclusion of the probe in both substrates. 4-CP exhibits room temperature luminescence in both hosts, being structured and much more intense in beta-CD. The emission was assigned to phosphorescence of the inclusion complex. Transient absorption demonstrated the formation of the unsubstituted phenoxyl radical and of 4-chlorophenoxyl radical in beta-CD. In silicalite only the later was detected. The studies of the photodegradation products indicate that phenol is the main photoproduct in beta-CD. In silicalite the chromatographic analysis indicates the presence of products that involve the ring cleavage. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffuse reflectance and laser-induced techniques were used to study photochemical and photophysical processes of benzil adsorbed on two solid powdered supports, microcrystalline cellulose and beta-cyclodextrin. In both substrates, a distribution of ground-state benzil conformers exists, largely dominated by skew conformations where the carbonyl groups are twisted one to the other. Room temperature phosphorescence was observed in air-equilibrated samples in both cases. The decay times vary greatly and the largest lifetime was obtained for benzil/beta-cyclodextrin, showing that this host's cavity accommodates benzil well, enhancing its room temperature phosphorescence. Triplet - triplet absorption of benzil entrapped in cellulose was detected and benzil ketyl radical formation also occurred. With benzil included into beta-cyclodextrin, and following laser excitation, benzoyl radicals were detected on the millisecond timescale. Product analysis and identification of laser-irradiated benzil samples in the two hosts clearly showed that the main degradation photoproducts were benzoic acid and benzaldehyde. The main differences were a larger benzoic acid/benzaldehyde ratio in the case of cellulose and the formation of benzyl alcohol in this support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitroheterocyclic compounds (NC) were candidate drugs proposed for Chagas disease chemotherapy. In this study, we investigated the complexation of hydroxymethylnitrofurazone (NFOH), a potential antichagasic compound, with alpha-cyclodextrin (alpha-CD), beta-cyclodextrin (beta-CD), Hydroxypropyl-beta-cyclodextrin (HP-beta-CD), Dimethyl-beta-cyclodextrin (DM-beta-CD) and gamma-cyclodextrin (gamma-CD) by fluorescence spectroscopy and molecular modeling studies. Hildebrand-Benesi equation was used to calculate the formation constants of NFOH with cyclodextrins based on the fluorescence differences in the CDs solution. The complexing capacity of NFOH with different CDs was compared through the results of association constant according to the following order: DM-beta-CD > beta-CD > alpha-CD > HP-beta-CD > gamma-CD. Molecular modeling studies give support for the experimental assignments, in favor of the formation of an inclusion complex between cyclodextrins with NFOH. This is an important study to investigate the effects of different kinds of cyclodextrins on the inclusion complex formation with NFOH and to better characterize a potential formulations to be used as therapeutic options for the oral treatment of Chagas disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The benznidazole (BNZ) is the only alternative for Chagas disease treatment in Brazil. This drug has low solubility, which restricts its dissolution rate. Thus, the present work aimed to study the BNZ interactions in binary systems with beta cyclodextrin (β-CD) and hydroxypropyl-beta cyclodextrin (HP-β-CD), in order to increase the apparent aqueous solubility of drug. The influence of seven hydrophilic polymers, triethanolamine (TEA) and 1-methyl-2- pyrrolidone (NMP) in benznidazole apparent aqueous solubility, as well as the formation of inclusion complexes was also investigated. The interactions in solution were predicted and investigated using phase solubility diagram methodology, nuclear magnetic resonance of protons (RMN) and molecular modeling. Complexes were obtained in solid phase by spray drying and physicochemical characterization included the UV-Vis spectrophotometric spectroscopy in the infrared region, scanning electron microscopy, X-ray diffraction and dissolution drug test from the different systems. The increment on apparent aqueous solubility of drug was achieved with a linear type (AL) in presence of both cyclodextrins at different pH values. The hydrophilic polymers and 1-methyl-2-pyrrolidone contributes to the formation of inclusion complexes, while the triethanolamine decreased the complex stability constant (Kc). The log-linear model applied for solubility diagrams revealed that both triethanolamine and 1-methyl-2-pyrrolidone showed an action cosolvent (both solvents) and complexing (1-methyl-2-pyrrolidone). The best results were obtained with complexes involving 1-methyl-2-pyrrolidone and hydroxypropylbeta- cyclodextrin, with an increased of benznidazole solubility in 27.9 and 9.4 times, respectively. The complexes effectiveness was proven by dissolution tests, in which the ternary complexes and physical mixtures involving 1-methyl- 2-pyrrolidone and both cyclodextrins investigated showed better results, showing the potential use as novel pharmaceutical ingredient, that leads to increased benznidazole bioavailability

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrofurazone (NF), 5-nitro-2-furaldehyde semicarbazone, a broad-spectrum antibiotic, has reported toxic effects and low solubility in water. It would be of great interest to form inclusion complexes between NF and a cyclodextrin, to develop more effective and safer antibiotic formulations. This paper focuses on the preparation of inclusion complexes of NF with 2-hydroxypropyl-β- cyclodextrin (HP-β-CD) and their initial characterization by evaluating rates of complex formation, photostability, solubility isotherms, release rate profiles, stoichiometry of the complexes and their morphology, as revealed by scanning electron microscopy. The kinetic tests of complex formation revealed that 17,3 h is enough for stabilization of the NF-cyclodextrin complex. The solubility isotherm studies showed that the isotherm changes from type A to type B, as a function of temperature. The photostability experiments showed that the insertion of the NF in the HP-β-CD cavity protects the drug from photodecomposition. The release kinetic tests showed that the profile of NF release from the complex is altered by the presence of HP-β-CD in the medium. A Job's plot indicated that the stoichiometry of the complex was 1:1 NF:HP-β-CD. The scanning electron micrographs showed changes in the crystal structure of NF in the complex. This study focused on the physicochemical properties of drug-delivery formulations that could potentially be developed into a novel type of therapy with NF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Praziquantel (PZQ) is the drug of choice commonly used for the treatment of shistosomiasis. However, it has low aqueous solubility, which could limit its bioavailability in the body. To circumvent these features, an inclusion complex with hydroxypropyl-beta- cyclodextrin (HP-β-CD) was prepared. Thus, the objective of this work was to prepare and characterize the PZQ/HP-β-CD inclusion complex. Morphological, spectroscopic, and calorimetric analysis showed the first signs of the guest/host interaction. The complexation kinetic analysis was used to determine the kinetic constant and, besides that, it was possible to establish the time consumed to reach equilibrium. Using the solubility isotherm, it was observed that the interaction with HP-β-CD increased 2.4 fold the aqueous solubility of plain PZQ. In vitro cytotoxicity tests, using fibroblast cells, evidenced no toxicity for these cells at the concentrations tested. These results demonstrated that there is a potential use of PZQ in formulations with HP-β-CD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the effect on the aqueous solubility and release rate of sulfamerazine (SMR) as model drug, inclusion complexes with beta-cyclodextrin (beta CD), methyl-beta-cyclodextrin (M beta CD) and hydroxypropyl-beta-cyclodextrin (HP beta CD) and a binary system with meglumine (MEG) were developed. The formation of 1: 1 inclusion complexes of SMR with the CDs and a SMR: MEG binary system in solution and in solid state was revealed by phase solubility studies (PSS), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis and X-Ray diffractometry (XRD) studies. The CDs solubilization of SMR could be improved by ionization of the drug molecule through pH adjustments. The higher apparent stability constants of SMR:CDs complexes were obtained in pH 2.00, demonstrating that CDs present more affinity for the unionized drug. The best approach for SMR solubility enhancement results from the combination of MEG and pH adjustment, with a 34-fold increment and a S-max of 54.8 mg/ml. The permeability of the drug was reduced due to the presence of beta CD, M beta CD, HP beta CD and MEG when used as solubilizers. The study then suggests interesting applications of CD or MEG complexes for modulating the release rate of SMR through semipermeable membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dapsone (DAP) is a synthetic sulfone drug with bacteriostatic activity, mainly against Mycobacterium leprae. In this study we have investigated the interactions of DAP with cyclodextrins, 2-hydroxypropyl-beta-cyclodextrin (HP beta CD) and beta-cyclodextrin (beta CD), in the presence and absence of water-soluble polymers, in order to improve its solubility and bioavailability. Solid systems DAP/HP beta CD and DAP/beta CD, in the presence or absence of polyvinylpyrrolidone (PVP K30) or hydroxypropyl methylcellulose (HPMC), were prepared. The binary and ternary systems were evaluated and characterized by SEM, DSC, XRD and NMR analysis as well as phase solubility assays, in order to investigate the interactions between DAP and the excipients in aqueous solution. This study revealed that inclusion complexes of DAP and cyclodextrins (HP beta CD and beta CD) can be produced in order to improve DAP solubility and bioavailability in the presence or absence of polymers (PVP K30 and HPMC). The more stable inclusion complex was obtained with HP beta CD, and consequently HP beta CD was more efficient in improving DAP solubility than beta CD, and the addition of polymers had no influence on DAP solubility or on the stability of the DAP/CDs complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, mixed systems composed of SDS in the presence of neutral cyclodextrins were considered. Firstly, the effect of the CDs on the CMC of the surfactant was evaluated by CE experiments. Furthermore, a new CE approach based on electric current measurement was developed for the estimation of the stoichiometry as well as of the binding constants of SDS-CDs complexes. The results of these investigations were compared to those obtained with a different technique, electronic paramagnetic resonance (EPR). The obtained results suggested that methylated CDs, in particular (2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CD), strongly affect the micellization of SDS in comparison to the other studied CDs. This effect also paralleled the chiral CD-MEKC performance, as indicated by the enantioresolution of (+/-)-Catechin, which was firstly selected as a model compound representative of important chiral phytomarkers. Then a CD-MEKC system, composed of sodium dodecyl sulfate as surfactant (90 mM) and hydroxypropyl-beta-cyclodextrin (25 mM) as chiral selector, under acidic conditions (25 mM borate – phosphate buffer, pH 2.5) was applied to study the thermal epimerisation of epi-structured catechins, (-)-Epicatechin and (-)-Epigallocatechin, to non epi-structured (-)-Catechin and (-)-Gallocatechin. The latter compounds, being non-native molecules, were for the first time regarded as useful phytomarkers of tea sample degradation. The proposed method was applied to the analysis of more than twenty tea samples of different geographical origins (China, Japan, Ceylon), having undergone different storage conditions and manufacturing processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is a fatal neurodegenerative condition characterized clinically by progressive memory loss and irreversible cognitive deterioration. It has been shown that there is a progressive degeneration of the brain cholinergic neurons which leads to the appearance of cognitive symptoms of the disease. The aim of this work was the formulation of multifunctional nanocarriers for nasal administration of tacrine-HCl (THA). This route has many advantages; in particular is possible to convey the drug directly to the Central Nervous System, through the olfactory bulb. In particular, were prepared Albumin nanoparticles carrying beta cyclodextrin and two different beta cyclodextrin derivatives (hydroxypropyl beta cyclodextrin and sulphobutylether beta cyclodextrin), and Multifunctional liposomes, prepared using traditional excipients (cholesterol and phosphatidylcholine), partly enriched with α-tocopherol (Toc) and/or polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) (Ω3). Both nanosystems were characterized in terms of size, Zeta potential and encapsulation efficiency. Were also evaluated their functional properties such as mucoadhesion and permeability, using an ex-vivo assay based on nasal sheep mucosa. On Liposomes were also assessed drug neuronal uptake, cell toxicity, antioxidant and, cytoprotective activity in the human neuronal cell line SH-SY5Y and finally tocopherol trans-membrane diffusion. Both the nanocarriers produced presented excellent properties and a high potential as new systems for CNS-delivery of anti-Alzheimer drugs via the nasal route.