982 resultados para HOLOGRAPHIC DARK ENERGY


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we extend previous work on the evolution of a primordial black hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the generalized second law of thermodynamics is violated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on perturbation theory, we study the dynamics of how dark matter and dark energy in the collapsing system approach dynamical equilibrium when they are in interaction. We find that the interaction between dark sectors cannot ensure the dark energy to fully cluster along with dark matter. When dark energy does not trace dark matter, we present a new treatment on studying the structure formation in the spherical collapsing system. Furthermore we examine the cluster number counts dependence on the interaction between dark sectors and analyze how dark energy inhomogeneities affect cluster abundances. It is shown that cluster number counts can provide specific signature of dark sectors interaction and dark energy inhomogeneities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a rigorous, regularization-independent local quantum field theoretic treatment of the Casimir effect for a quantum scalar field of mass mu not equal 0 which yields closed form expressions for the energy density and pressure. As an application we show that there exist special states of the quantum field in which the expectation value of the renormalized energy-momentum tensor is, for any fixed time, independent of the space coordinate and of the perfect fluid form g(mu,nu)rho with rho > 0, thus providing a concrete quantum field theoretic model of the cosmological constant. This rho represents the energy density associated to a state consisting of the vacuum and a certain number of excitations of zero momentum, i.e., the constituents correspond to lowest energy and pressure p <= 0. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider perturbations in a cosmological model with a small coupling between dark energy and dark matter. We prove that the stability of the curvature perturbation depends on the type of coupling between dark sectors. When the dark energy is of quintessence type, if the coupling is proportional to the dark matter energy density, it will drive the instability in the curvature perturbations: however if the coupling is proportional to the energy density of dark energy, there is room for the stability in the curvature perturbations. When the dark energy is of phantom type, the perturbations are always stable, no matter whether the coupling is proportional to the one or the other energy density. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In models of coupled dark energy and dark matter the mass of the dark matter particle depends on the cosmological evolution of the dark energy field. In this Letter we exemplify in a simple model the effects of this mass variation on the relic abundance of cold dark matter. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the interaction between dark sectors by considering the momentum transfer caused by the dark matter scattering elastically within the dark energy fluid. Describing the dark scattering analogy to the Thomson scattering which couples baryons and photons, we examine the impact of the dark scattering in CMB observations. Performing global fitting with the latest observational data, we find that for a dark energy equation of state w < -1, the CMB gives tight constraints on dark matter-dark energy elastic scattering. Assuming a dark matter particle of proton mass, we derive an elastic scattering cross section of sigma(D) < 3.295 x 10(-10)sigma(T) where sigma(T) is the cross section of Thomson scattering. For w > -1, however, the constraints are poor. For w = -1, sigma(D) can formally take any value.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we extend the first order formalism for cosmological models that present an interaction between a fermionic and a scalar field. Cosmological exact solutions describing universes filled with interacting dark energy and dark matter have been obtained. Viable cosmological solutions with an early period of decelerated expansion followed by late acceleration have been found, notably one which presents a dark matter component dominating in the past and a dark energy component dominating in the future. In another one, the dark energy alone is the responsible for both periods, similar to a Chaplygin gas case. Exclusively accelerating solutions have also been obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss the gravitational collapse of a spherically symmetric massive core of a star in which the fluid component is interacting with a growing vacuum energy density. The influence of the variable vacuum in the collapsing core is quantified by a phenomenological beta parameter as predicted by dimensional arguments and the renormalization group approach. For all reasonable values of this free parameter, we find that the vacuum energy density increases the collapsing time, but it cannot prevent the formation of a singular point. However, the nature of the singularity depends on the value of beta. In the radiation case, a trapped surface is formed for beta <= 1/2, whereas for beta >= 1/2, a naked singularity is developed. In general, the critical value is beta = 1-2/3(1 + omega) where omega is the parameter describing the equation of state of the fluid component.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a toy del to analyze the consequences of dark matter interaction with a dark energy background on the overall rotation of galaxy clusters and the misalignment between their dark matter and baryon distributions when compared to ACDM predictions. The interaction parameters are found via a genetic algorithm search. The results obtained suggest that interaction is a basic phenomenon whose effects are detectable even in simple models of galactic dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La materia ordinaria copre soli pochi punti percentuali della massa-energia totale dell'Universo, che è invece largamente dominata da componenti “oscure”. Il modello standard usato per descriverle è il modello LambdaCDM. Nonostante esso sembri consistente con la maggior parte dei dati attualmente disponibili, presenta alcuni problemi fondamentali che ad oggi restano irrisolti, lasciando spazio per lo studio di modelli cosmologici alternativi. Questa Tesi mira a studiare un modello proposto recentemente, chiamato “Multi-coupled Dark Energy” (McDE), che presenta interazioni modificate rispetto al modello LambdaCDM. In particolare, la Materia Oscura è composta da due diversi tipi di particelle con accoppiamento opposto rispetto ad un campo scalare responsabile dell'Energia Oscura. L'evoluzione del background e delle perturbazioni lineari risultano essere indistinguibili da quelle del modello LambdaCDM. In questa Tesi viene presentata per la prima volta una serie di simulazioni numeriche “zoomed”. Esse presentano diverse regioni con risoluzione differente, centrate su un singolo ammasso di interesse, che permettono di studiare in dettaglio una singola struttura senza aumentare eccessivamente il tempo di calcolo necessario. Un codice chiamato ZInCo, da me appositamente sviluppato per questa Tesi, viene anch'esso presentato per la prima volta. Il codice produce condizioni iniziali adatte a simulazioni cosmologiche, con differenti regioni di risoluzione, indipendenti dal modello cosmologico scelto e che preservano tutte le caratteristiche dello spettro di potenza imposto su di esse. Il codice ZInCo è stato usato per produrre condizioni iniziali per una serie di simulazioni numeriche del modello McDE, le quali per la prima volta mostrano, grazie all'alta risoluzione raggiunta, che l'effetto di segregazione degli ammassi avviene significativamente prima di quanto stimato in precedenza. Inoltre, i profili radiale di densità ottenuti mostrano un appiattimento centrale nelle fasi iniziali della segregazione. Quest'ultimo effetto potrebbe aiutare a risolvere il problema “cusp-core” del modello LambdaCDM e porre limiti ai valori dell'accoppiamento possibili.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The emission from neutral hydrogen (HI) clouds in the post-reionization era (z <= 6), too faint to be individually detected, is present as a diffuse background in all low frequency radio observations below 1420MHz. The angular and frequency fluctuations of this radiation (similar to 1 mK) are an important future probe of the large-scale structures in the Universe. We show that such observations are a very effective probe of the background cosmological model and the perturbed Universe. In our study we focus on the possibility of determining the redshift-space distortion parameter beta, coordinate distance r(nu), and its derivative with redshift r(nu)('). Using reasonable estimates for the observational uncertainties and configurations representative of the ongoing and upcoming radio interferometers, we predict parameter estimation at a precision comparable with supernova Ia observations and galaxy redshift surveys, across a wide range in redshift that is only partially accessed by other probes. Future HI observations of the post-reionization era present a new technique, complementing several existing ones, to probe the expansion history and to elucidate the nature of the dark energy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use Bayesian model selection techniques to test extensions of the standard flat LambdaCDM paradigm. Dark-energy and curvature scenarios, and primordial perturbation models are considered. To that end, we calculate the Bayesian evidence in favour of each model using Population Monte Carlo (PMC), a new adaptive sampling technique which was recently applied in a cosmological context. The Bayesian evidence is immediately available from the PMC sample used for parameter estimation without further computational effort, and it comes with an associated error evaluation. Besides, it provides an unbiased estimator of the evidence after any fixed number of iterations and it is naturally parallelizable, in contrast with MCMC and nested sampling methods. By comparison with analytical predictions for simulated data, we show that our results obtained with PMC are reliable and robust. The variability in the evidence evaluation and the stability for various cases are estimated both from simulations and from data. For the cases we consider, the log-evidence is calculated with a precision of better than 0.08. Using a combined set of recent CMB, SNIa and BAO data, we find inconclusive evidence between flat LambdaCDM and simple dark-energy models. A curved Universe is moderately to strongly disfavoured with respect to a flat cosmology. Using physically well-motivated priors within the slow-roll approximation of inflation, we find a weak preference for a running spectral index. A Harrison-Zel'dovich spectrum is weakly disfavoured. With the current data, tensor modes are not detected; the large prior volume on the tensor-to-scalar ratio r results in moderate evidence in favour of r=0.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cosmological observations of light from type Ia supernovae, the cosmic microwave background and the galaxy distribution seem to indicate that the expansion of the universe has accelerated during the latter half of its age. Within standard cosmology, this is ascribed to dark energy, a uniform fluid with large negative pressure that gives rise to repulsive gravity but also entails serious theoretical problems. Understanding the physical origin of the perceived accelerated expansion has been described as one of the greatest challenges in theoretical physics today. In this thesis, we discuss the possibility that, instead of dark energy, the acceleration would be caused by an effect of the nonlinear structure formation on light, ignored in the standard cosmology. A physical interpretation of the effect goes as follows: due to the clustering of the initially smooth matter with time as filaments of opaque galaxies, the regions where the detectable light travels get emptier and emptier relative to the average. As the developing voids begin to expand the faster the lower their matter density becomes, the expansion can then accelerate along our line of sight without local acceleration, potentially obviating the need for the mysterious dark energy. In addition to offering a natural physical interpretation to the acceleration, we have further shown that an inhomogeneous model is able to match the main cosmological observations without dark energy, resulting in a concordant picture of the universe with 90% dark matter, 10% baryonic matter and 15 billion years as the age of the universe. The model also provides a smart solution to the coincidence problem: if induced by the voids, the onset of the perceived acceleration naturally coincides with the formation of the voids. Additional future tests include quantitative predictions for angular deviations and a theoretical derivation of the model to reduce the required phenomenology. A spin-off of the research is a physical classification of the cosmic inhomogeneities according to how they could induce accelerated expansion along our line of sight. We have identified three physically distinct mechanisms: global acceleration due to spatial variations in the expansion rate, faster local expansion rate due to a large local void and biased light propagation through voids that expand faster than the average. A general conclusion is that the physical properties crucial to account for the perceived acceleration are the growth of the inhomogeneities and the inhomogeneities in the expansion rate. The existence of these properties in the real universe is supported by both observational data and theoretical calculations. However, better data and more sophisticated theoretical models are required to vindicate or disprove the conjecture that the inhomogeneities are responsible for the acceleration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Einstein's general relativity is a classical theory of gravitation: it is a postulate on the coupling between the four-dimensional, continuos spacetime and the matter fields in the universe, and it yields their dynamical evolution. It is believed that general relativity must be replaced by a quantum theory of gravity at least at extremely high energies of the early universe and at regions of strong curvature of spacetime, cf. black holes. Various attempts to quantize gravity, including conceptually new models such as string theory, have suggested that modification to general relativity might show up even at lower energy scales. On the other hand, also the late time acceleration of the expansion of the universe, known as the dark energy problem, might originate from new gravitational physics. Thus, although there has been no direct experimental evidence contradicting general relativity so far - on the contrary, it has passed a variety of observational tests - it is a question worth asking, why should the effective theory of gravity be of the exact form of general relativity? If general relativity is modified, how do the predictions of the theory change? Furthermore, how far can we go with the changes before we are face with contradictions with the experiments? Along with the changes, could there be new phenomena, which we could measure to find hints of the form of the quantum theory of gravity? This thesis is on a class of modified gravity theories called f(R) models, and in particular on the effects of changing the theory of gravity on stellar solutions. It is discussed how experimental constraints from the measurements in the Solar System restrict the form of f(R) theories. Moreover, it is shown that models, which do not differ from general relativity at the weak field scale of the Solar System, can produce very different predictions for dense stars like neutron stars. Due to the nature of f(R) models, the role of independent connection of the spacetime is emphasized throughout the thesis.