970 resultados para Growth-factor-beta-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background-Marfan syndrome (MFS), a condition caused by fibrillin-1 gene mutation is associated with aortic aneurysm that shows elastic lamellae disruption, accumulation of glycosaminoglycans, and vascular smooth muscle cell (VSMC) apoptosis with minimal inflammatory response. We examined aneurysm tissue and cultured cells for expression of transforming growth factor-beta1 to -beta3 (TGF beta 1 to 3), hyaluronan content, apoptosis, markers of cell migration, and infiltration of vascular progenitor cells (CD34). Methods and Results-MFS aortic aneurysm (6 males, 5 females; age 8 to 78 years) and normal aorta (5 males, 3 females; age 22 to 56 years) were used. Immunohistochemistry showed increased expression of TGF beta 1 to 3, hyaluronan, and CD34-positive microcapillaries in MFS aneurysm compared with control. There was increased expression of TGF beta 1 to 3 and hyaluronan in MFS cultured VSMCs, adventitial fibroblasts (AF), and skin fibroblasts (SF). Apoptosis was increased in MFS (VSMC: mean cell loss in MFS 29%, n of subjects = 5, versus control 8%, n = 3, P < 0.05; AF: 28%, n = 5 versus 7%, n = 5, P < 0.05; SF: 29%, n = 3 versus 4%, n = 3, not significant). In MFS, there was a 2-fold increase in adventitial microcapillaries containing CD34-positive cells compared with control tissue. Scratch wound assay showed absence of CD44, MT1-MMP, and beta-3 integrin at the leading edge of migration in MFS indicating altered directional migration. Western blot showed increased expression of TGF beta 1 to 3 in MFS but no change in expression of CD44, MT1-MMP, or beta-3 integrin compared with controls. Conclusions-There was overexpression of TGF-beta in MFS associated with altered hyaluronan synthesis, increased apoptosis, impaired progenitor cell recruitment, and abnormal directional migration. These factors limit tissue repair and are likely to contribute to aneurysm development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoarthritis (OA) is the most common form of arthritis with a high socioeconomic burden, with an incompletely understood etiology. Evidence suggests a role for the transforming growth factor beta (TGF-ß) signalling pathway and epigenomics in OA. The aim of this thesis was to understand the involvement of the TGF-ß pathway in OA and to determine the DNA methylation patterns of OA-affected cartilage as compared to the OA-free cartilage. First, I found that a common SNP in the BMP2 gene, a ligand in the Bone morphogenetic protein (BMP) subunit of TGF-ß pathway, was associated with OA in the Newfoundland population. I also showed a genetic association between SMAD3 - a signal transducer in the TGF-ß subunit of the TGF-ß signalling pathway - and the total radiographic burden of OA. I further demonstrated that SMAD3 is over-expressed in OA cartilage, suggesting an over activation of the TGF-ß signalling in OA. Next, I examined the connection of these genes in the regulation of matrix metallopeptidase 13 (MMP13) - an enzyme known to destroy extracellular matrix in OA cartilage - in the context of the TGF-ß signalling. The analyses showed that TGF-ß, MMP13, and SMAD3 were overexpressed in OA cartilage, whereas the expression of BMP2 was significantly reduced. The expression of TGF-ß was positively correlated with that of SMAD3 and MMP13, suggesting that TGF-ß signalling is involved in up-regulation of MMP13. This regulation, however, appears not to be controlled by SMAD3 signals, possibly due to the involvement of collateral signalling, and to be suppressed by BMP regulation in healthy cartilage, whose levels were reduced in end-stage OA. In a genome-wide DNA methylation analysis, I reported CpG sites differentially methylated in OA and showed that the cartilage methylome has a potential to distinguish between OA-affected and non-OA cartilage. Functional clustering analysis of the genes harbouring differentially methylated loci revealed that they are enriched in the skeletal system morphogenesis pathway, which could be a potential candidate for further OA studies. Overall, the findings from the present thesis provide evidence that the TGF-ß signalling pathway is associated with the development of OA, and epigenomics might be involved as a potential mechanism in OA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TH-induced cardiac hypertrophy in vivo is accompanied by increased cardiac Transforming Growth Factor-beta 1 (TGF-beta 1) levels, which is mediated by Angiotensin II type 1 receptors (AT1R) and type 2 receptors (AT2R). However, the possible involvement of this factor in TH-induced cardiac hypertrophy is unknown. In this study we evaluated whether TH is able to modulate TGF-beta 1 in isolated cardiac, as well as the possible contribution of AT1R and AT2R in this response. The cardiac fibroblasts treated with T(3) did not show alteration on TGF-beta 1 expression. However, cardiomyocytes treated with T(3) presented an increase in TGF-beta 1 expression, as well as an increase in protein synthesis. The AT1R blockade prevented the T(3)-induced cardiomyocyte hypertrophy, while the AT2R blockage attenuated this response. The T(3)-induced increase on TGF-beta 1 expression in cardiomyocytes was not changed by the use of AT1R and AT2R blockers. These results indicate that Angiotensin II receptors are not implicated in T(3)-induced increase on TGF-beta expression and suggest that the trophic effects exerted by T(3) on cardiomyocytes are not dependent on the higher TGF-beta 1 levels, since the AT1R and AT2R blockers were able to attenuate the T(3)-induced cardiomyocyte hypertrophy but were not able to attenuate the increase on TGF-beta 1 levels promoted by T(3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Objective Congenital hypogonadotropic hypogonadism with anosmia (Kallmann syndrome) or with normal sense of smell is a heterogeneous genetic disorder caused by defects in the synthesis, secretion and action of gonadotrophin-releasing hormone (GnRH). Mutations involving autosomal genes have been identified in approximately 30% of all cases of hypogonadotropic hypogonadism. However, most studies that screened patients with hypogonadotropic hypogonadism for gene mutations did not include gene dosage methodologies. Therefore, it remains to be determined whether patients without detected point mutation carried a heterozygous deletion of one or more exons. Measurements We used the multiplex ligation-dependent probe amplification (MLPA) assay to evaluate the potential contribution of heterozygous deletions of FGFR1, GnRH1, GnRHR, GPR54 and NELF genes in the aetiology of GnRH deficiency. Patients We studied a mutation-negative cohort of 135 patients, 80 with Kallmann syndrome and 55 with normosmic hypogonadotropic hypogonadism. Results One large heterozygous deletion involving all FGFR1 exons was identified in a female patient with sporadic normosmic hypogonadotropic hypogonadism and mild dimorphisms as ogival palate and cavus foot. FGFR1 hemizygosity was confirmed by gene dosage with comparative multiplex and real-time PCRs. Conclusions FGFR1 or other autosomal gene deletion is a possible but very rare event and does not account for a significant number of sporadic or inherited cases of isolated GnRH deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IgA nephropathy (IgAN) is a kidney disease with a varying renal prognosis. Recently, many studies have demonstrated that renal alpha-smooth muscle actin (alpha-SMA) and transforming growth factor (TGF-beta 1) expression, as well interstitial mast cell infiltrates could represent a prognostic marker in several renal diseases. The aim of our study was to analyze the prognostic value of mast cell, TGF-beta 1 and alpha-SMA expression in IgAN. A survey of the medical records and renal biopsy reports of 62 patients with a diagnosis of IgAN followed-up from 1987 to 2003 was performed. The mean follow-up time was 74.7 +/- 50.0 months. The immunohistochemical studies were performed using a monoclonal antibody anti-human mast cell tryptase, a polyclonal antibody anti-human TGF-beta 1, and a monoclonal antibody anti-human alpha-SMA. An unfavorable clinical course of IgAN was related to interstitial mast cell infiltrates and alpha-SMA expression in the tubulointerstitial area. Expression of glomerular TGF-beta 1 and alpha-SMA, and interstitial TGF-beta 1 is not correlated with clinical course in IgAN. In conclusion, the increased number of mast cells and higher alpha-SMA expression in the tubulointerstitial area may be predictive factors for the poor prognosis of patients with IgAN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Porphyria cutanea tarda (PCT) is a metabolic disease characterized by vesicles and blisters in sun-exposed areas and scleroderma-like lesions in sun-exposed and non-sun-exposed areas. Mast cells participate in the pathogenesis of bullous diseases and diseases that show sclerosis, including PCT. Moreover, transforming growth factor-beta (TGF-beta) is the main cytokine in the development of tissue sclerosis. The correlation of mast cells and TGF-beta with the lesions of PCT has not been examined, however. The possible role of mast cells and TGF-beta (and the relationship between them) in the development of PCT lesions is discussed. Methods To quantify mast cells and cells expressing TGF-beta in skin samples from patients with PCT and controls, immunohistochemical studies were performed in tissue sections allied to morphometric analyses. Results The numbers of mast cells and cells expressing TGF-beta per square millimiter were increased in the PCT group relative to controls, and there was a direct and significant correlation between the mast cell number and cells expressing TGF-beta in PCT. Conclusions The results suggest that the increased number of mast cells and of cells expressing TGF-beta, as well as their direct correlation, may contribute to the pathogenesis of the skin lesions in PCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undernourished mice infected (UI) submitted to low and long-lasting infections by Schistosoma mansoni are unable to develop the hepatic periportal fibrosis that is equivalent to Symmers’ fibrosis in humans. In this report, the effects of the host’s nutritional status on parasite (worm load, egg viability and maturation) and host (growth curves, biology, collagen synthesis and characteristics of the immunological response) were studied and these are considered as interdependent factors influencing the amount and distribution of fibrous tissue in hepatic periovular granulomas and portal spaces. The nutritional status of the host influenced the low body weight and low parasite burden detected in UI mice as well as the number, viability and maturation of released eggs. The reduced oviposition and increased number of degenerated or dead eggs were associated with low protein synthesis detected in deficient hosts, which likely induced the observed decrease in transformation growth factor (TGF)-β1 and liver collagen. Despite the reduced number of mature eggs in UI mice, the activation of TGF-β1 and hepatic stellate cells occurred regardless of the unviability of most miracidia, due to stimulation by fibrogenic proteins and eggshell glycoproteins. However, changes in the repair mechanisms influenced by the nutritional status in deficient animals may account for the decreased liver collagen detected in the present study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor-beta (TGF-beta) and its related proteins regulate broad aspects of body development, including cell proliferation, differentiation, apoptosis and gene expression, in various organisms. Deregulated TGF-beta function has been causally implicated in the generation of human fibrotic disorders and in tumor progression. Nevertheless, the molecular mechanisms of TGF-beta action remained essentially unknown until recently. Here, we discuss recent progress in our understanding of the mechanism of TGF-beta signal transduction with respect to the regulation of gene expression, the control of cell phenotype and the potential usage of TGF-beta for the treatment of human diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FGFR1 mutations have been identified in both Kallmann syndrome and normosmic HH (nIHH). To date, few mutations in the FGFR1 gene have been structurally or functionally characterized in vitro to identify molecular mechanisms that contribute to the disease pathogenesis. We attempted to define the in vitro functionality of two FGFR1 mutants (R254W and R254Q), resulting from two different amino acid substitutions of the same residue, and to correlate the in vitro findings to the patient phenotypes. Two unrelated GnRH deficient probands were found to harbor mutations in FGFR1 (R254W and R254Q). Mutant signaling activity and expression levels were evaluated in vitro and compared to a wild type (WT) receptor. Signaling activity was determined by a FGF2/FGFR1 dependent transcription reporter assay. Receptor total expression levels were assessed by Western blot and cell surface expression was measured by a radiolabeled antibody binding assay. The R254W maximal receptor signaling capacity was reduced by 45% (p<0.01) while R254Q activity was not different from WT. However, both mutants displayed diminished total protein expression levels (40 and 30% reduction relative to WT, respectively), while protein maturation was unaffected. Accordingly, cell surface expression levels of the mutant receptors were also significantly reduced (35% p<0.01 and 15% p<0.05, respectively). The p.R254W and p.R254Q are both loss-of-function mutations as demonstrated by their reduced overall and cell surface expression levels suggesting a deleterious effect on receptor folding and stability. It appears that a tryptophan substitution at R254 is more disruptive to receptor structure than the more conserved glutamine substitution. No clear correlation between the severity of in vitro loss-of-function and phenotypic presentation could be assigned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic nephropathy (DN) is characterized structurally by progressive mesangial deposition of extracellular matrix (ECM). Transforming growth factor-ß (TGF-ß) is considered to be one of the major cytokines involved in the regulation of ECM synthesis and degradation. Several studies suggest that an increase in urinary TGF-ß levels may reflect an enhanced production of this polypeptide by the kidney cells. We evaluated TGF-ß in occasional urine samples from 14 normal individuals and 23 patients with type 2 diabetes (13 with persistent proteinuria >500 mg/24 h, DN, 6 with microalbuminuria, DMMA, and 4 with normal urinary albumin excretion, DMN) by enzyme immunoassay. An increase in the rate of urinary TGF-ß excretion (pg/mg UCreat.) was observed in patients with DN (296.07 ± 330.77) (P<0.001) compared to normal individuals (17.04 ± 18.56) (Kruskal-Wallis nonparametric analysis of variance); however, this increase was not observed in patients with DMMA (25.13 ± 11.30) or in DMN (18.16 ± 11.82). There was a positive correlation between the rate of urinary TGF-ß excretion and proteinuria (r = 0.70, a = 0.05) (Pearson's analysis), one of the parameters of disease progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les maladies cardio-vasculaires (MCV), telles que l’hypertension et l’athérosclérose, s’accompagnent de modifications structurales et fonctionnelles au niveau vasculaire. Un fonctionnement aberrant de la migration, l’hypertrophie et la prolifération des cellules musculaires lisses vasculaires (CMLV) sont des évènements cellulaires à l’origine de ces changements. L’endothéline-1 (ET-1) contribue à la pathogénèse des anomalies vasculaires, notamment via l’activation des protéines MAPK et PI3-K/PKB, des composantes clés impliquées dans les voies prolifératives et de croissance cellulaires. Il a été suggéré que le stress oxydant jouerait un rôle intermédiaire dans les effets pathophysiologiques vasculaires de l’ET-1. En conséquence, une modulation de la signalisation induite par l’ET-1 peut servir comme éventuelle stratégie thérapeutique contre le développement des MCV. Il apparaît de nos jours un regain d’intérêt dans l’utilisation des agents phyto-chimiques pour traiter plusieurs maladies. La curcumine, constituant essentiel de l’épice curcuma, est dotée de plusieurs propriétés biologiques parmi lesquelles des propriétés anti-oxydantes, anti-prolifératrices et cardio-protectrices. Cependant, les mécanismes moléculaires de son effet cardio-protecteur demeurent obscurs. Dans cette optique, l’objectif de cette étude a été d’examiner l’efficacité de la curcumine à inhiber la signalisation induite par l’ET-1 dans les CMLV. La curcumine a inhibé la phosphorylation des protéines IGF-1R, PKB, c-Raf et ERK1/2, induite par l’ET-1 et l’IGF-1. De plus, la curcumine a inhibé l’expression du facteur de transcription Egr-1 induite par l’ET-1 et l’IGF-1, dans les CMLV. Ces résultats suggèrent que la capacité de la curcumine à atténuer ces voies de signalisation serait un mécanisme d’action potentiel de ses effets protecteurs au niveau cardiovasculaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)