995 resultados para Ground state wave function
Resumo:
Analytic functions have been obtained to represent the potential energy surfaces of C3 and HCN in their ground electronic states. These functions closely reproduce the available data on the energy, geometry, and force constants in all stable conformations, as well as data on the various dissociation products, and ab initio calculations of the energy at other conformations. The form of the resulting surfaces are portrayed in various ways and discussed briefly.
Resumo:
Analytical potential functions are reported for the ground state surfaces of HCO and HNO, the functions being derived from spectroscopic and ab initio data. Harmonized force fields have been deduced for the stable configurations of both molecules and vibration frequencies predicted for the metastable species COH and NOH.
Resumo:
The vibrational energy levels of diazocarbene (diazomethylene) in its electronic ground state, (X) over tilde (3) Sigma(-) CNN, have been predicted using the variational method. The potential energy surfaces of (X) over tilde (3) A" CNN were determined by employing ab initio single reference coupled cluster with single and double excitations (CCSD), CCSD with perturbative triple excitations [CCSD(T)], multi-reference complete active space self-consistent-field (CASSCF), and internally contracted multi-reference configuration interaction (ICMRCI) methods. The correlation-consistent polarised valence quadruple zeta (cc-pVQZ) basis set was used. Four sets of vibrational energy levels determined from the four distinct analytical potential functions have been compared with the experimental values from the laser-induced fluorescence measurements of Wurfel et al. obtained in 1992. The CCSD, CCSD(T), and CASSCF potentials have not provided satisfactory agreement with the experimental observations. In this light, the importance of both non-dynamic (static) and dynamic correlation effects in describing the ground state of CNN is emphasised. Our best theoretical fundamental frequencies at the cc-pVQZ ICMRCI level of theory, v(1) = 1230, v(2) = 394, and v(3) = 1420 cm(-1) are in excellent agreement with the experimental values of v(1) = 1235, v(2) = 396, and v(3) = 1419cm(-1) and the mean absolute deviation between the 23 calculated and experimental vibrational energy levels is only 7.4 cm(-1). It is shown that the previously suggested observation of the v(3) frequency at about 2847cm(-1) was in fact the first overtone 2v(3).
Resumo:
The vibrational-rotational energy levels of aluminum monohydroxide in its electronic ground state, (A) over tilde (1)A' AlOH, have been predicted using the variational method. The potential energy surface of the (X) over tilde (1)A' ground state of AlOH was determined employing the ab initio coupled cluster method with single, double, and perturbative triple excitations [CCSD(T)] and the correlation-consistent polarized valence quadruple zeta (cc-pVQZ) basis set. Low-lying J= 0 and J= 1 vibrational levels are reported. These are analyzed in terms of the quasilinearity of the molecule. Coriolis effects are shown to be significant. We hope that our predictions will be of value in the future when assigning rovibrational transitions in spectroscopic studies. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively. (C) 2008 American Institute of Physics.
Resumo:
The new compounds [Ru(R-DAB)(acac)2] (R-DAB = 1,4-diorganyl-
1,4-diazabuta-1,3-diene; R = tert-butyl, 4-methoxyphenyl,
2,6-dimethylphenyl; acac– = 2,4-pentanedionate) exhibit intrachelate ring bond lengths 1.297
Resumo:
Recent developments in the field of ultracold gases has led to the production of degenerate samples of polar molecules. These have large static electric-dipole moments, which in turn causes the molecules to interact strongly. We investigate the interaction of polar particles in waveguide geometries subject to an applied polarizing field. For circular waveguides, tilting the direction of the polarizing field creates a periodic inhomogeneity of the interparticle interaction. We explore the consequences of geometry and interaction for stability of the ground state within the Thomas-Fermi model. Certain combinations of tilt angles and interaction strengths are found to preclude the existence of a stable Thomas-Fermi ground state. The system is shown to exhibit different behavior for quasi-one-dimensional and three-dimensional trapping geometries.
Resumo:
The ground state masses and binding energies of the nucleon, lambda0, lambdac+ , lambdab0 are studied within a constituent quark QCD-inspired light-front model. The light-front Faddeev equations for the Qqq composite spin 1/2 baryons, are derived and solved numerically. The experimental data for the masses are qualitatively described by a flavor independent effective interaction.
Resumo:
ABSTRACT: We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developped formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities.
Resumo:
We derive an infinite set of conserved charges for some Z(N) symmetric quantum spin models by constructing their Lax pairs. These models correspond to the Potts model, Ashkin-Teller model and the particular set of self-dual Z(N) models solved by Fateev and Zamolodchikov [6]. The exact ground state energy for this last family of hamiltonians is also presented. © 1986.
Resumo:
We derive general rigorous lower bounds for the average ground state energy per site e ((d)) of the quantum and classical Edwards-Anderson spin-glass model in dimensions d=2 and d=3 in the thermodynamic limit. For the classical model they imply that e ((2))a parts per thousand yena'3/2 and e ((3))a parts per thousand yena'2.204a <-.
Resumo:
We study an elliptic system of the form Lu = vertical bar v vertical bar(p-1) v and Lv = vertical bar u vertical bar(q-1) u in Omega with homogeneous Dirichlet boundary condition, where Lu := -Delta u in the case of a bounded domain and Lu := -Delta u + u in the cases of an exterior domain or the whole space R-N. We analyze the existence, uniqueness, sign and radial symmetry of ground state solutions and also look for sign changing solutions of the system. More general non-linearities are also considered.
Resumo:
The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds: [NiII{NiII(MeOH)3}8(μ-CN)30{MV(CN)3}6]·xMeOH·yH2O (MV = MoV (1) with x = 17, y = 1; MV = WV (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) Å, b = 19.2583(10) Å, c = 32.4279(17) Å, β = 113.155(6)°, and Z = 4 for 1 and a = 28.5278(16) Å, b = 19.2008(18) Å, c = 32.4072(17) Å, β = 113.727(6)°, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 NiII and 6 MV, all linked by μ-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the μ-cyano-bridged metal ions of the type NiII−NC−MV. Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, χ‘ ‘M has a nonzero value that is frequency dependent. However, there appears no out-of-phase (χ‘ ‘M) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm-1, deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.