987 resultados para Geometric model
Resumo:
In the two-Higgs-doublet model (THDM), generalized-CP transformations (phi(i) -> X-ij phi(*)(j) where X is unitary) and unitary Higgs-family transformations (phi(i) -> U-ij phi(j)) have recently been examined in a series of papers. In terms of gauge-invariant bilinear functions of the Higgs fields phi(i), the Higgs-family transformations and the generalized-CP transformations possess a simple geometric description. Namely, these transformations correspond in the space of scalar-field bilinears to proper and improper rotations, respectively. In this formalism, recent results relating generalized CP transformations with Higgs-family transformations have a clear geometric interpretation. We will review what is known regarding THDM symmetries, as well as derive new results concerning those symmetries, namely how they can be interpreted geometrically as applications of several CP transformations.
Resumo:
A continuous version of the hierarchical spherical model at dimension d=4 is investigated. Two limit distributions of the block spin variable X(gamma), normalized with exponents gamma = d + 2 and gamma=d at and above the critical temperature, are established. These results are proven by solving certain evolution equations corresponding to the renormalization group (RG) transformation of the O(N) hierarchical spin model of block size L(d) in the limit L down arrow 1 and N ->infinity. Starting far away from the stationary Gaussian fixed point the trajectories of these dynamical system pass through two different regimes with distinguishable crossover behavior. An interpretation of this trajectories is given by the geometric theory of functions which describe precisely the motion of the Lee-Yang zeroes. The large-N limit of RG transformation with L(d) fixed equal to 2, at the criticality, has recently been investigated in both weak and strong (coupling) regimes by Watanabe (J. Stat. Phys. 115:1669-1713, 2004) . Although our analysis deals only with N = infinity case, it complements various aspects of that work.
Resumo:
We characterize optimal policy in a two-sector growth model with xed coeÆcients and with no discounting. The model is a specialization to a single type of machine of a general vintage capital model originally formulated by Robinson, Solow and Srinivasan, and its simplicity is not mirrored in its rich dynamics, and which seem to have been missed in earlier work. Our results are obtained by viewing the model as a specific instance of the general theory of resource allocation as initiated originally by Ramsey and von Neumann and brought to completion by McKenzie. In addition to the more recent literature on chaotic dynamics, we relate our results to the older literature on optimal growth with one state variable: speci cally, to the one-sector setting of Ramsey, Cass and Koopmans, as well as to the two-sector setting of Srinivasan and Uzawa. The analysis is purely geometric, and from a methodological point of view, our work can be seen as an argument, at least in part, for the rehabilitation of geometric methods as an engine of analysis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, we propose a cure rate survival model by assuming the number of competing causes of the event of interest follows the Geometric distribution and the time to event follow a Birnbaum Saunders distribution. We consider a frequentist analysis for parameter estimation of a Geometric Birnbaum Saunders model with cure rate. Finally, to analyze a data set from the medical area. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The ability of block copolymers to spontaneously self-assemble into a variety of ordered nano-structures not only makes them a scientifically interesting system for the investigation of order-disorder phase transitions, but also offers a wide range of nano-technological applications. The architecture of a diblock is the most simple among the block copolymer systems, hence it is often used as a model system in both experiment and theory. We introduce a new soft-tetramer model for efficient computer simulations of diblock copolymer melts. The instantaneous non-spherical shape of polymer chains in molten state is incorporated by modeling each of the two blocks as two soft spheres. The interactions between the spheres are modeled in a way that the diblock melt tends to microphase separate with decreasing temperature. Using Monte Carlo simulations, we determine the equilibrium structures at variable values of the two relevant control parameters, the diblock composition and the incompatibility of unlike components. The simplicity of the model allows us to scan the control parameter space in a completeness that has not been reached in previous molecular simulations.The resulting phase diagram shows clear similarities with the phase diagram found in experiments. Moreover, we show that structural details of block copolymer chains can be reproduced by our simple model.We develop a novel method for the identification of the observed diblock copolymer mesophases that formalizes the usual approach of direct visual observation,using the characteristic geometry of the structures. A cluster analysis algorithm is used to determine clusters of each component of the diblock, and the number and shape of the clusters can be used to determine the mesophase.We also employ methods from integral geometry for the identification of mesophases and compare their usefulness to the cluster analysis approach.To probe the properties of our model in confinement, we perform molecular dynamics simulations of atomistic polyethylene melts confined between graphite surfaces. The results from these simulations are used as an input for an iterative coarse-graining procedure that yields a surface interaction potential for the soft-tetramer model. Using the interaction potential derived in that way, we perform an initial study on the behavior of the soft-tetramer model in confinement. Comparing with experimental studies, we find that our model can reflect basic features of confined diblock copolymer melts.
Resumo:
The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed. In this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed. The proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path. As an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn. Evaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach.
Resumo:
This paper introduces the stochastic version of the Geometric Machine Model for the modelling of sequential, alternative, parallel (synchronous) and nondeterministic computations with stochastic numbers stored in a (possibly infinite) shared memory. The programming language L(D! 1), induced by the Coherence Space of Processes D! 1, can be applied to sequential and parallel products in order to provide recursive definitions for such processes, together with a domain-theoretic semantics of the Stochastic Arithmetic. We analyze both the spacial (ordinal) recursion, related to spacial modelling of the stochastic memory, and the temporal (structural) recursion, given by the inclusion relation modelling partial objects in the ordered structure of process construction.
Resumo:
High-angle grain boundary migration is predicted during geometric dynamic recrystallization (GDRX) by two types of mathematical models. Both models consider the driving pressure due to curvature and a sinusoidal driving pressure owing to subgrain walls connected to the grain boundary. One model is based on the finite difference solution of a kinetic equation, and the other, on a numerical technique in which the boundary is subdivided into linear segments. The models show that an initially flat boundary becomes serrated, with the peak and valley migrating into both adjacent grains, as observed during GDRX. When the sinusoidal driving pressure amplitude is smaller than 2 pi, the boundary stops migrating, reaching an equilibrium shape. Otherwise, when the amplitude is larger than 2 pi, equilibrium is never reached and the boundary migrates indefinitely, which would cause the protrusions of two serrated parallel boundaries to impinge on each other, creating smaller equiaxed grains.
Resumo:
The ground and excited state geometry of the six-coordinate copper(II) ion is examined in detail using the CuF64- and Cu(H2O)(6)(2+) complexes as examples. A variety of spectroscopic techniques are used to illustrate the relations between the geometric and electronic properties of these complexes through the characterization of their potential energy surfaces.
Resumo:
In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by DIETERICH and KILGORE (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance D-c on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.
Resumo:
Although the concept of bet-hedging has been useful in microevolutionary studies for over 25 years, a recent paper by Andrew Simons suggests that it is also applicable to macroevolutionary events, with the same fundamental process of selection working at all temporal scales.
Resumo:
Não existe uma definição única de processo de memória de longo prazo. Esse processo é geralmente definido como uma série que possui um correlograma decaindo lentamente ou um espectro infinito de frequência zero. Também se refere que uma série com tal propriedade é caracterizada pela dependência a longo prazo e por não periódicos ciclos longos, ou que essa característica descreve a estrutura de correlação de uma série de longos desfasamentos ou que é convencionalmente expressa em termos do declínio da lei-potência da função auto-covariância. O interesse crescente da investigação internacional no aprofundamento do tema é justificado pela procura de um melhor entendimento da natureza dinâmica das séries temporais dos preços dos ativos financeiros. Em primeiro lugar, a falta de consistência entre os resultados reclama novos estudos e a utilização de várias metodologias complementares. Em segundo lugar, a confirmação de processos de memória longa tem implicações relevantes ao nível da (1) modelação teórica e econométrica (i.e., dos modelos martingale de preços e das regras técnicas de negociação), (2) dos testes estatísticos aos modelos de equilíbrio e avaliação, (3) das decisões ótimas de consumo / poupança e de portefólio e (4) da medição de eficiência e racionalidade. Em terceiro lugar, ainda permanecem questões científicas empíricas sobre a identificação do modelo geral teórico de mercado mais adequado para modelar a difusão das séries. Em quarto lugar, aos reguladores e gestores de risco importa saber se existem mercados persistentes e, por isso, ineficientes, que, portanto, possam produzir retornos anormais. O objetivo do trabalho de investigação da dissertação é duplo. Por um lado, pretende proporcionar conhecimento adicional para o debate da memória de longo prazo, debruçando-se sobre o comportamento das séries diárias de retornos dos principais índices acionistas da EURONEXT. Por outro lado, pretende contribuir para o aperfeiçoamento do capital asset pricing model CAPM, considerando uma medida de risco alternativa capaz de ultrapassar os constrangimentos da hipótese de mercado eficiente EMH na presença de séries financeiras com processos sem incrementos independentes e identicamente distribuídos (i.i.d.). O estudo empírico indica a possibilidade de utilização alternativa das obrigações do tesouro (OT’s) com maturidade de longo prazo no cálculo dos retornos do mercado, dado que o seu comportamento nos mercados de dívida soberana reflete a confiança dos investidores nas condições financeiras dos Estados e mede a forma como avaliam as respetiva economias com base no desempenho da generalidade dos seus ativos. Embora o modelo de difusão de preços definido pelo movimento Browniano geométrico gBm alegue proporcionar um bom ajustamento das séries temporais financeiras, os seus pressupostos de normalidade, estacionariedade e independência das inovações residuais são adulterados pelos dados empíricos analisados. Por isso, na procura de evidências sobre a propriedade de memória longa nos mercados recorre-se à rescaled-range analysis R/S e à detrended fluctuation analysis DFA, sob abordagem do movimento Browniano fracionário fBm, para estimar o expoente Hurst H em relação às séries de dados completas e para calcular o expoente Hurst “local” H t em janelas móveis. Complementarmente, são realizados testes estatísticos de hipóteses através do rescaled-range tests R/S , do modified rescaled-range test M - R/S e do fractional differencing test GPH. Em termos de uma conclusão única a partir de todos os métodos sobre a natureza da dependência para o mercado acionista em geral, os resultados empíricos são inconclusivos. Isso quer dizer que o grau de memória de longo prazo e, assim, qualquer classificação, depende de cada mercado particular. No entanto, os resultados gerais maioritariamente positivos suportam a presença de memória longa, sob a forma de persistência, nos retornos acionistas da Bélgica, Holanda e Portugal. Isto sugere que estes mercados estão mais sujeitos a maior previsibilidade (“efeito José”), mas também a tendências que podem ser inesperadamente interrompidas por descontinuidades (“efeito Noé”), e, por isso, tendem a ser mais arriscados para negociar. Apesar da evidência de dinâmica fractal ter suporte estatístico fraco, em sintonia com a maior parte dos estudos internacionais, refuta a hipótese de passeio aleatório com incrementos i.i.d., que é a base da EMH na sua forma fraca. Atendendo a isso, propõem-se contributos para aperfeiçoamento do CAPM, através da proposta de uma nova fractal capital market line FCML e de uma nova fractal security market line FSML. A nova proposta sugere que o elemento de risco (para o mercado e para um ativo) seja dado pelo expoente H de Hurst para desfasamentos de longo prazo dos retornos acionistas. O expoente H mede o grau de memória de longo prazo nos índices acionistas, quer quando as séries de retornos seguem um processo i.i.d. não correlacionado, descrito pelo gBm(em que H = 0,5 , confirmando- se a EMH e adequando-se o CAPM), quer quando seguem um processo com dependência estatística, descrito pelo fBm(em que H é diferente de 0,5, rejeitando-se a EMH e desadequando-se o CAPM). A vantagem da FCML e da FSML é que a medida de memória de longo prazo, definida por H, é a referência adequada para traduzir o risco em modelos que possam ser aplicados a séries de dados que sigam processos i.i.d. e processos com dependência não linear. Então, estas formulações contemplam a EMH como um caso particular possível.
Resumo:
In this thesis we implement estimating procedures in order to estimate threshold parameters for the continuous time threshold models driven by stochastic di®erential equations. The ¯rst procedure is based on the EM (expectation-maximization) algorithm applied to the threshold model built from the Brownian motion with drift process. The second procedure mimics one of the fundamental ideas in the estimation of the thresholds in time series context, that is, conditional least squares estimation. We implement this procedure not only for the threshold model built from the Brownian motion with drift process but also for more generic models as the ones built from the geometric Brownian motion or the Ornstein-Uhlenbeck process. Both procedures are implemented for simu- lated data and the least squares estimation procedure is also implemented for real data of daily prices from a set of international funds. The ¯rst fund is the PF-European Sus- tainable Equities-R fund from the Pictet Funds company and the second is the Parvest Europe Dynamic Growth fund from the BNP Paribas company. The data for both funds are daily prices from the year 2004. The last fund to be considered is the Converging Europe Bond fund from the Schroder company and the data are daily prices from the year 2005.
Resumo:
Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.