960 resultados para Genome-wide Search
Resumo:
Natural genetic variation can have a pronounced influence on human taste perception, which in turn may influence food preference and dietary choice. Genome-wide association studies represent a powerful tool to understand this influence. To help optimize the design of future genome-wide-association studies on human taste perception we have used the well-known TAS2R38-PROP association as a tool to determine the relative power and efficiency of different phenotyping and data-analysis strategies. The results show that the choice of both data collection and data processing schemes can have a very substantial impact on the power to detect genotypic variation that affects chemosensory perception. Based on these results we provide practical guidelines for the design of future GWAS studies on chemosensory phenotypes. Moreover, in addition to the TAS2R38 gene past studies have implicated a number of other genetic loci to affect taste sensitivity to PROP and the related bitter compound PTC. None of these other locations showed genome-wide significant associations in our study. To facilitate further, target-gene driven, studies on PROP taste perception we provide the genome-wide list of p-values for all SNPs genotyped in the current study.
Resumo:
ABSTRACTThe Online Mendelian Inheritance in Man database (OMIM) reports about 3000 Mendelian diseases of known causal gene and about 2000 that remain to be mapped. These cases are often difficult to solve because of the rareness of the disease, the structure of the family (too big or too small) or the heterogeneity of the phenotype. The goal of this thesis is to explore the current genetic tools, before the advent of ultra high throughput sequencing, and integrate them in the attempt to map the genes behind the four studied cases. In this framework we have studied a small family with a recessive disease, a modifier gene for the penetrance of a dominant mutation, a large extended family with a cardiac phenotype and clinical and/or allelic heterogeneity and we have molecularly analyzed a balanced chromosomal translocation.RESUMELa base de données des maladies à transmission mendélienne, Online Mendelian Inheritance in Man (OMIM), contient environ 3000 affections à caractère mendélien pour lesquelles le gène responsable est connu et environ 2000 qui restent à élucider.Les cas restant à résoudre sont souvent difficiles soit par le caractère intrinsèquement rare de ces maladies soit à cause de difficultés structurelles (famille trop petite ou trop étendue) ou hétérogénéité du phénotype ou génétique. Cette thèse s'inscrit avant l'arrivée des nouveaux outils de séquençage à haut débit. Son but est d'explorer les outils génétiques actuels, et de les intégrer pour trouver les gènes impliqués dans quatre cas représentant chacun une situation génétique différente : nous avons étudié une famille de quatre individus avec une transmission récessive, recherché un gène modificateur de la pénétrance de mutations dominantes, étudié une famille étendue présentant un phénotype cardiaque cliniquement et/ou allèliquement hétérogène et nous avons fait l'analyse moléculaire d'une translocation chromosomique balancée.
Resumo:
Two genome-wide association studies for meningococcal disease and tuberculosis identify new loci associated with susceptibility to these infectious diseases. They highlight a role for the acquired and innate immune systems in host control of several human pathogens and demonstrate that denser genotyping platforms and population-specific reference panels are necessary for genetic studies in African populations.
Resumo:
Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade the xenobiotic compounds dibenzodioxin and dibenzofuran (DBF). A number of genes involved in DBF degradation have been previously characterized, such as the dxn cluster, dbfB, and the electron transfer components fdx1, fdx3, and redA2. Here we use a combination of whole genome transcriptome analysis and transposon library screening to characterize RW1 catabolic and other genes implicated in the reaction to or degradation of DBF. To detect differentially expressed genes upon exposure to DBF, we applied three different growth exposure experiments, using either short DBF exposures to actively growing cells or growing them with DBF as sole carbon and energy source. Genome-wide gene expression was examined using a custom-made microarray. In addition, proportional abundance determination of transposon insertions in RW1 libraries grown on salicylate or DBF by ultra-high throughput sequencing was used to infer genes whose interruption caused a fitness loss for growth on DBF. Expression patterns showed that batch and chemostat growth conditions, and short or long exposure of cells to DBF produced very different responses. Numerous other uncharacterized catabolic gene clusters putatively involved in aromatic compound metabolism increased expression in response to DBF. In addition, only very few transposon insertions completely abolished growth on DBF. Some of those (e.g., in dxnA1) were expected, whereas others (in a gene cluster for phenylacetate degradation) were not. Both transcriptomic data and transposon screening suggest operation of multiple redundant and parallel aromatic pathways, depending on DBF exposure. In addition, increased expression of other non-catabolic genes suggests that during initial exposure, S. wittichii RW1 perceives DBF as a stressor, whereas after longer exposure, the compound is recognized as a carbon source and metabolized using several pathways in parallel.
Resumo:
A report of the annual meeting of the European Society of Human Genetics, Amsterdam, 6-9 May 2006.
Resumo:
Polymorphisms in IL28B were shown to affect clearance of hepatitis C virus (HCV) infection in genome-wide association (GWA) studies. Only a fraction of patients with chronic HCV infection develop liver fibrosis, a process that might also be affected by genetic factors. We performed a 2-stage GWA study of liver fibrosis progression related to HCV infection. We studied well-characterized HCV-infected patients of European descent who underwent liver biopsies before treatment. We defined various liver fibrosis phenotypes on the basis of METAVIR scores, with and without taking the duration of HCV infection into account. Our GWA analyses were conducted on a filtered primary cohort of 1161 patients using 780,650 single nucleotide polymorphisms (SNPs). We genotyped 96 SNPs with P values <5 × 10(-5) from an independent replication cohort of 962 patients. We then assessed the most interesting replicated SNPs using DNA samples collected from 219 patients who participated in separate GWA studies of HCV clearance. In the combined cohort of 2342 HCV-infected patients, the SNPs rs16851720 (in the total sample) and rs4374383 (in patients who received blood transfusions) were associated with fibrosis progression (P(combined) = 8.9 × 10(-9) and 1.1 × 10(-9), respectively). The SNP rs16851720 is located within RNF7, which encodes an antioxidant that protects against apoptosis. The SNP rs4374383, together with another replicated SNP, rs9380516 (P(combined) = 5.4 × 10(-7)), were linked to the functionally related genes MERTK and TULP1, which encode factors involved in phagocytosis of apoptotic cells by macrophages. Our GWA study identified several susceptibility loci for HCV-induced liver fibrosis; these were linked to genes that regulate apoptosis. Apoptotic control might therefore be involved in liver fibrosis.
Resumo:
Polysaccharide sidechains attached to proteins play important roles in cell-cell and receptor-ligand interactions. Variation in the carbohydrate component has been extensively studied for the iron transport protein transferrin, because serum levels of the transferrin isoforms asialotransferrin + disialotransferrin (carbohydrate-deficient transferrin, CDT) are used as biomarkers of excessive alcohol intake. We conducted a genome-wide association study to assess whether genetic factors affect CDT concentration in serum. CDT was measured in three population-based studies: one in Switzerland (CoLaus study, n = 5181) and two in Australia (n = 1509, n = 775). The first cohort was used as the discovery panel and the latter ones served as replication. Genome-wide single-nucleotide polymorphism (SNP) typing data were used to identify loci with significant associations with CDT as a percentage of total transferrin (CDT%). The top three SNPs in the discovery panel (rs2749097 near PGM1 on chromosome 1, and missense polymorphisms rs1049296, rs1799899 in TF on chromosome 3) were successfully replicated , yielding genome-wide significant combined association with CDT% (P = 1.9 × 10(-9), 4 × 10(-39), 5.5 × 10(-43), respectively) and explain 5.8% of the variation in CDT%. These allelic effects are postulated to be caused by variation in availability of glucose-1-phosphate as a precursor of the glycan (PGM1), and variation in transferrin (TF) structure.
Resumo:
Epidemiological studies have recognized a genetic diathesis for suicidal behavior, which is independent of other psychiatric disorders. Genome-wide association studies (GWAS) on suicide attempt (SA) and ideation have failed to identify specific genetic variants. Here, we conduct further GWAS and for the first time, use polygenic score analysis in cohorts of patients with mood disorders, to test for common genetic variants for mood disorders and suicide phenotypes. Genome-wide studies for SA were conducted in the RADIANT and GSK-Munich recurrent depression samples and London Bipolar Affective Disorder Case-Control Study (BACCs) then meta-analysis was performed. A GWAS on suicidal ideation during antidepressant treatment had previously been conducted in the Genome Based Therapeutic Drugs for Depression (GENDEP) study. We derived polygenic scores from each sample and tested their ability to predict SA in the mood disorder cohorts or ideation status in the GENDEP study. Polygenic scores for major depressive disorder, bipolar disorder and schizophrenia from the Psychiatric Genomics Consortium were used to investigate pleiotropy between psychiatric disorders and suicide phenotypes. No significant evidence for association was detected at any SNP in GWAS or meta-analysis. Polygenic scores for major depressive disorder significantly predicted suicidal ideation in the GENDEP pharmacogenetics study and also predicted SA in a combined validation dataset. Polygenic scores for SA showed no predictive ability for suicidal ideation. Polygenic score analysis suggests pleiotropy between psychiatric disorders and suicidal ideation whereas the tendency to act on such thoughts may have a partially independent genetic diathesis. © 2014 Wiley Periodicals, Inc.
Resumo:
Rapport de synthèse :Les individus HIV-positifs constituent une population à risque pour les maladies cardiovasculaires telles que |'infarctus cardiaque ou cérébrale. Celles-ci découlent d'une formation accélérée d'athéroscIérose. Ces pathologies s'expliquent en grande partie par une dyslipidémie observée au sein de cette population et qui sont dues à des facteurs externes tels que : l'immunosuppression avancée, la virémie non-contrôlée, et les effets de la thérapie antirétrovirale. Récemment, des polymorphismes nucléotidiques simples (SNP) associés à la dyslipidémie ont été mis en évidence d'une manière globale par des Genome-Wide Association Studies (GWAS). Le but principal de cette étude est d'éva|uer et de valider |'effet cumulatif des SNP identifiés dans ces GWAS pour la dyslipidémie chez des patients HIV-positifs. De plus, |'identification des facteurs non-génétiques qui contribuent à la dyslipidémie démontrent |'importance des facteurs externes, tels que mentionnés ci- dessus, et en particulier à ceux de la thérapie antirétrovirale.Les participants de l'étude proviennent de trois groupes: 426 personnes sélectionnées pour une étude précédente, 222 personnes sélectionnées de façon arbitraire dans la "Cohorte HIV Suisse" et 103 personnes sélectionnées avec un "New-Onset Diabetes mellitus" identifiées lors d'études précédentes. Ces individus ont contribué à plus de 34'000 mesures de lipides sur une durée moyenne supérieure à 7 ans. Pour l'étude, 33 SNP identifiés dans des GWAS et 9 SNP identifiés dans d'autres études publiées dans la littérature non-couverte par des GWAS ont été repris. Le génotypage a été complété pour 745 (99.2%) des 751 participants. Pour les analyses statistiques, les thérapies antirétrovirales ont été divisées en trois groupes (favorisant peu, moyennement et fortement la dyslipidémie), et trois scores génétiques ont été créés (profil favorable, moyennement favorable, non favorable/favorisant la dyslipidémie). Dans un premier temps, l'effet sur la valeur des lipides d'un ou deux allèles variants a été analysé au moyen d'un modèle de régression pour chaque SNP en ajustant le modèle pour les variables non- génétiques. Dans un deuxième temps, les SNP ayant une valeur p >= à 0.2 ont été repris dans un model Multi-SNP, ce modèle est également ajusté pour les variables non-génétiques. Puisque cette étude se base sur des SNP précédemment identifiés, celle-ci évalue uniquement l'association établie entre chaque SNP et les critères qui ont été établis au préalable, tels que : Cholestérol totale, HDL Cholestérol, non-HDL Cholestérol ou Triglycérides. Les résultats trouvés lors de |'étude confirment les résultats de la littérature. Cette étude montre que les SNP associés à la dyslipidémie doivent être analysés dans le contexte d'une thérapie antirétrovirale en tenant compte de la démographie et en considérant les valeurs du HIV (CD4+, virémie). Ces SNP montrent une tendance à prédire une dyslipidémie prolongée chez l'individu. En effet, un patient avec une thérapie antirétrovirale favorisant la dyslipidémie et un patrimoine génétique non-favorable a un risque qui est 3-f0is plus important d'avoir un Non-HDL- Cholestérol élevé, 5-fois plus important d'avoir un HDL-Cholestérol abaissé, et 4 à 5-fois plus important d'avoir une hypertriglycéridémie qu'un patient qui suit une thérapie antirétrovirale favorisant peu la dyslipidémie qui a un patrimoine génétique favorable. Vu la corrélation entre les SNP et la thérapie antirétrovirale, les cliniciens devraient intégrer les informations génétiques afin de choisir une thérapie antirétrovirale en fonction du patrimoine génétique.
Resumo:
Cancer/Testis (CT) genes, normally expressed in germ line cells but also activated in a wide range of cancer types, often encode antigens that are immunogenic in cancer patients, and present potential for use as biomarkers and targets for immunotherapy. Using multiple in silico gene expression analysis technologies, including twice the number of expressed sequence tags used in previous studies, we have performed a comprehensive genome-wide survey of expression for a set of 153 previously described CT genes in normal and cancer expression libraries. We find that although they are generally highly expressed in testis, these genes exhibit heterogeneous gene expression profiles, allowing their classification into testis-restricted (39), testis/brain-restricted (14), and a testis-selective (85) group of genes that show additional expression in somatic tissues. The chromosomal distribution of these genes confirmed the previously observed dominance of X chromosome location, with CT-X genes being significantly more testis-restricted than non-X CT. Applying this core classification in a genome-wide survey we identified >30 CT candidate genes; 3 of them, PEPP-2, OTOA, and AKAP4, were confirmed as testis-restricted or testis-selective using RT-PCR, with variable expression frequencies observed in a panel of cancer cell lines. Our classification provides an objective ranking for potential CT genes, which is useful in guiding further identification and characterization of these potentially important diagnostic and therapeutic targets.
Resumo:
OBJECTIVES: Co-morbidity between depression and anxiety disorders is common. In this study we define a quantitative measure of anxiety by summating four anxiety items from the SCAN interview in a large collection of major depression (MDD) cases to identify genes contributing to this complex phenotype. METHODS: A total of 1522 MDD cases dichotomised according to those with at least one anxiety item scored (n = 1080) and those without anxiety (n = 442) were analysed, and also compared to 1588 healthy controls at a genome-wide level, to identify genes that may contribute to anxiety in MDD. RESULTS: For the quantitative trait, suggestive evidence of association was detected for two SNPs, and for the dichotomous anxiety present/absent ratings for three SNPs at genome-wide level. In the genome-wide analysis of MDD cases with co-morbid anxiety and healthy controls, two SNPs attained P values of < 5 × 10⁻⁶. Analysing candidate genes, P values ≤ 0.0005 were found with three SNPs for the quantitative trait and three SNPs for the dichotomous trait. CONCLUSIONS: This study provides an initial genome-wide assessment of possible genetic contribution to anxiety in MDD. Although suggestive evidence of association was found for several SNPs, our findings suggest that there are no common variants strongly associated with anxious depression.
Resumo:
Background: An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to atoxic dose of this drug, and the relationship between caffeine and oxidative stress pathways.Methodology/Principal Findings: We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeinecontainingplates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H2O2-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 aresensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner. Conclusions/Significance: With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we havedemonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug.
Resumo:
The aim of this study was to describe the clinical and PSG characteristics of narcolepsy with cataplexy and their genetic predisposition by using the retrospective patient database of the European Narcolepsy Network (EU-NN). We have analysed retrospective data of 1099 patients with narcolepsy diagnosed according to International Classification of Sleep Disorders-2. Demographic and clinical characteristics, polysomnography and multiple sleep latency test data, hypocretin-1 levels, and genome-wide genotypes were available. We found a significantly lower age at sleepiness onset (men versus women: 23.74 ± 12.43 versus 21.49 ± 11.83, P = 0.003) and longer diagnostic delay in women (men versus women: 13.82 ± 13.79 versus 15.62 ± 14.94, P = 0.044). The mean diagnostic delay was 14.63 ± 14.31 years, and longer delay was associated with higher body mass index. The best predictors of short diagnostic delay were young age at diagnosis, cataplexy as the first symptom and higher frequency of cataplexy attacks. The mean multiple sleep latency negatively correlated with Epworth Sleepiness Scale (ESS) and with the number of sleep-onset rapid eye movement periods (SOREMPs), but none of the polysomnographic variables was associated with subjective or objective measures of sleepiness. Variant rs2859998 in UBXN2B gene showed a strong association (P = 1.28E-07) with the age at onset of excessive daytime sleepiness, and rs12425451 near the transcription factor TEAD4 (P = 1.97E-07) with the age at onset of cataplexy. Altogether, our results indicate that the diagnostic delay remains extremely long, age and gender substantially affect symptoms, and that a genetic predisposition affects the age at onset of symptoms.
Resumo:
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.