994 resultados para Genetic Vectors
Resumo:
There is considerable interest in the development of vaccination strategies that would elicit strong tumor-specific CTL responses in cancer patients. One strategy consists of using recombinant viruses encoding amino acid sequences corresponding to natural CTL-defined peptide from tumor Ags as immunogens. However, studies with synthetic tumor antigenic peptides have demonstrated that introduction of single amino acid substitutions may dramatically increase their immunogenicity. In this study we have used a well-defined human melanoma tumor Ag system to test the possibility of translating the immunological potency of synthetic tumor antigenic peptide analogues into recombinant vaccinia viruses carrying constructs with the appropriate nucleotide substitutions. Our results indicate that the use of a mutated minigene construct directing the expression of a modified melanoma tumor Ag leads to improved Ag recognition and, more importantly, to enhanced immunogenicity. Thus, recombinant vaccinia viruses containing mutated minigene sequences may lead to new strategies for the induction of strong tumor-specific CTL responses in cancer patients.
Resumo:
Recently, using HIV-1-derived lentivectors, we obtained efficient transduction of primary human B lymphocytes cocultured with murine EL-4 B5 thymoma cells, but not of isolated B cells activated by CD40 ligation. Coculture with a cell line is problematic for gene therapy applications or study of gene functions. We have now found that transduction of B cells in a system using CpG DNA was comparable to that in the EL-4 B5 system. A monocistronic vector with a CMV promoter gave 32 +/- 4.7% green fluorescent protein (GFP)+ cells. A bicistronic vector, encoding IL-4 and GFP in the first and second cistrons, respectively, gave 14.2 +/- 2.1% GFP+ cells and IL-4 secretion of 1.3 +/- 0.2 ng/10(5) B cells/24 h. This was similar to results obtained in CD34+ cells using the elongation factor-1alpha promoter. Activated memory and naive B cells were transducible. After transduction with a bicistronic vector encoding a viral FLIP molecule, vFLIP was detectable by FACS or Western blot in GFP+, but not in GFP-, B cells, and 57% of sorted GFP+ B cells were protected against Fas ligand-induced cell death. This system should be useful for gene function research in primary B cells and development of gene therapies.
Resumo:
AIMS: Retroviral-mediated gene therapy has been proposed as a primary or adjuvant treatment for advanced cancer, because retroviruses selectively infect dividing cells. Efficacy of retroviral-mediated gene transfer, however, is limited in vivo. Although packaging cell lines can produce viral vectors continuously, such allo- or xenogeneic cells are normally rejected when used in vivo. Encapsulation using microporous membranes can protect the packaging cells from rejection. In this study, we used an encapsulated murine packaging cell line to test the effects of in situ delivery of a retrovirus bearing the herpes simplex virus thymidine kinase suicide gene in a rat model of orthotopic glioblastoma. MATERIALS AND METHODS: To test gene transfer in vitro, encapsulated murine psi2-VIK packaging cells were co-cultured with baby hamster kidney (BHK) cells, and the percentage of transfected BHK cells was determined. For in vivo experiments, orthotopic C6 glioblastomas were established in Wistar rats. Capsules containing psi2-VIK cells were stereotaxically implanted into these tumours and the animals were treated with ganciclovir (GCV). Tumours were harvested 14 days after initiation of GCV therapy for morphometric analysis. RESULTS: Encapsulation of psi2-VIK cells increased transfection rates of BHK target cells significantly in vitro compared to psi2-VIK conditioned medium (3 x 10(6) vs 2.3 x 10(4) cells; P<0.001). In vivo treatment with encapsulated packaging cells resulted in 3% to 5% of C6 tumour cells transduced and 45% of tumour volume replaced by necrosis after GCV (P<0.01 compared to controls). CONCLUSION: In this experimental model of glioblastoma, encapsulation of a xenogeneic packaging cell line increased half-life and transduction efficacy of retrovirus-mediated gene transfer and caused significant tumour necrosis.
Resumo:
Chinese hamster ovary (CHO) cells are the system of choice for the production of complex molecules, such as monoclonal antibodies. Despite significant progress in improving the yield from these cells, the process to the selection, identification, and maintenance of high-producing cell lines remains cumbersome, time consuming, and often of uncertain outcome. Matrix attachment regions (MARs) are DNA sequences that help generate and maintain an open chromatin domain that is favourable to transcription and may also facilitate the integration of several copies of the transgene. By incorporating MARs into expression vectors, an increase in the proportion of high-producer cells as well as an increase in protein production are seen, thereby reducing the number of clones to be screened and time to production by as much as 9 months. In this chapter, we describe how MARs can be used to increase transgene expression and provide protocols for the transfection of CHO cells in suspension and detection of high-producing antibody cell clones.
Resumo:
Retroviral vectors have many favorable properties for gene therapies, but their use remains limited by safety concerns and/or by relatively lower titers for some of the safer self-inactivating (SIN) derivatives. In this study, we evaluated whether increased production of SIN retroviral vectors can be achieved from the use of matrix attachment region (MAR) epigenetic regulators. Two MAR elements of human origin were found to increase and to stabilize the expression of the green fluorescent protein transgene in stably transfected HEK-293 packaging cells. Introduction of one of these MAR elements in retroviral vector-producing plasmids yielded higher expression of the viral vector RNA. Consistently, viral titers obtained from transient transfection of MAR-containing plasmids were increased up to sixfold as compared with the parental construct, when evaluated in different packaging cell systems and transfection conditions. Thus, use of MAR elements opens new perspectives for the efficient generation of gene therapy vectors.
Resumo:
A procedure is described that allows the simple identification and sorting of live human cells that transcribe actively the HIV virus, based on the detection of GFP fluorescence in cells. Using adenoviral vectors for gene transfer, an expression cassette including the HIV-1 LTR driving the reporter gene GFP was introduced into cells that expressed stably either the Tat transcriptional activator, or an inactive mutant of Tat. Both northern and fluorescence-activated cell sorting (FACS) analysis indicate that cells containing the functional Tat protein presented levels of GFP mRNA and GFP fluorescence several orders of magnitude higher than control cells. Correspondingly, cells infected with HIV-1 showed similar enhanced reporter gene activation. HIV-1-infected cells of the lymphocytic line Jurkat were easily identified by fluorescence-activated cell sorting (FACS) as they displayed a much higher green fluorescence after transduction with the reporter adenoviral vector. This procedure could also be applied on primary human cells as blood monocyte-derived macrophages exposed to the adenoviral LTR-GFP reporter presented a much higher fluorescence when infected with HIV-1 compared with HIV-uninfected cells. The vector described has the advantages of labelling cells independently of their proliferation status and that analysis can be carried on intact cells which can be isolated subsequently by fluorescence-activated cell sorting (FACS) for further culture. This work suggests that adenoviral vectors carrying a virus-specific transcriptional control element controlling the expressions of a fluorescent protein will be useful in the identification and isolation of cells transcribing actively the viral template, and to be of use for drug screening and susceptibility assays.
Resumo:
The anaerobically inducible arcDABC operon encodes the enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa. Upon induction, the arcAB mRNAs and proteins reach high intracellular levels, because of a strong anaerobically controlled promoter and mRNA processing in arcD, leading to stable downstream transcripts. We explored the usefulness of this system for the construction of expression vectors. The lacZ gene of Escherichia coli was expressed to the highest levels when fused close to the arc promoter. Insertion of lacZ further downstream into arcA or arcB did not stabilize the intrinsically unstable lacZ mRNA. On the contrary, lacZ mRNA appeared to be a vulnerable endonuclease target destabilizing arcAB mRNAs in the 5'-to-3' direction in P. aeruginosa. The native arc promoter was modified for optional expression in the -10 sequence and in the -40 region, which is a binding site for the anaerobic regulator ANR. In P. aeruginosa grown either anaerobically or with oxygen limitation in unshaken cultures, this promoter was stronger than the induced tac promoter. The P. aeruginosa lipAH genes, which encode extracellular lipase and lipase foldase, respectively, were fused directly to the modified arc promoter in an IncQ vector plasmid. Semianaerobic static cultures of P. aeruginosa PAO1 carrying this recombinant plasmid overproduced extracellular lipase 30-fold during stationary phase compared with the production by strain PAO1 without the plasmid. Severe oxygen limitation, in contrast, resulted in poor lipase productivity despite effective induction of the ANR-dependent promoter, suggesting that secretion of active lipase is blocked by the absence of oxygen. In conclusion, the modified arc promoter is useful for driving the expression of cloned genes in P. aeruginosa during oxygen-limited growth and stationary phase.
Resumo:
betaTC-tet cells are conditionally immortalized pancreatic beta cells which can confer long-term correction of hyperglycemia when transplanted in syngeneic streptozocin diabetic mice. The use of these cells for control of type I diabetes in humans will require their encapsulation and transplantation in non-native sites where relative hypoxia and cytokines may threaten their survival. In this study we genetically engineered betaTC-tet cells with the anti-apoptotic gene Bcl-2 using new lentiviral vectors and showed that it protected this cell line against apoptosis induced by hypoxia, staurosporine and a mixture of cytokines (IL-1beta, IFN-gamma and TNF-alpha). We further demonstrated that Bcl-2 expression permitted growth at higher cell density and with shorter doubling time. Expression of Bcl-2, however, did not inter- fere either with the intrinsic mechanism of growth arrest present in the betaTC-tet cells or with their normal glucose dose-dependent insulin secretory activity. Furthermore, Bcl-2 expressing betaTC-tet cells retained their capacity to secrete insulin under mild hypoxia. Finally, transplantation of these cells under the kidney capsule of streptozocin diabetic C3H mice corrected hyperglycemia for several months. These results demonstrate that the murine betaTC-tet cell line can be genetically modified to improve its resistance against different stress-induced apoptosis while preserving its normal physiological function. These modified cells represent an improved source for cell transplantation therapy of type I diabetes.
Resumo:
Expression of the cancer/germ-line antigen NY-ESO-1 by tumors elicits spontaneous humoral and cellular immune responses in some cancer patients. Development of vaccines capable of stimulating such comprehensive immune responses is desirable. We have produced recombinant lentivectors directing the intracellular synthesis of NY-ESO-1 (rLV/ESO) and have analyzed the in vivo immune response elicited by this vector. Single injection of rLV/ESO into HLA-A2-transgenic mice elicited long-lasting B and T cell responses against NY-ESO-1. CD8+ T cells against the HLA-A2-restricted peptide NY-ESO-1(157-165) were readily detectable ex vivo and showed restricted TCR Vbeta usage. Moreover, rLV/ESO elicited a far greater anti-NY-ESO-1(157-165) CD8+ T cell response than peptide- or protein-based vaccines. Anti-NY-ESO-1 antibodies were rapidly induced after immunization and their detection preceded that of the antigen-specific CD8+ T cells. The rLV/ESO also induced CD4+ T cells. These cells played an essential role as their depletion completely abrogated B cell and CD8+ T cell responses against NY-ESO-1. The induced CD4+ T cells were primarily directed against a single NY-ESO-1 epitope spanning amino acids 81-100. Altogether, our study shows that rLV/ESO induces potent and comprehensive immune responses in vivo.
Resumo:
Ability to induce protein expression at will in a cell is a powerful strategy used by scientists to better understand the function of a protein of interest. Various inducible systems have been designed in eukaryotic cells to achieve this goal. Most of them rely on two distinct vectors, one encoding a protein that can regulate transcription by binding a compound X, and one hosting the cDNA encoding the protein of interest placed downstream of promoter sequences that can bind the protein regulated by compound X (e.g., tetracycline, ecdysone). The commercially available systems are not designed to allow cell- or tissue-specific regulated expression. Additionally, although these systems can be used to generate stable clones that can be induced to express a given protein, extensive screening is often required to eliminate the clones that display poor induction or high basal levels. In the present report, we aimed to design a pancreatic beta cell-specific tetracycline-inducible system. Since the classical two-vector based tetracycline-inducible system proved to be unsatisfactory in our hands, a single vector was eventually designed that allowed tight beta cell-specific tetracycline induction in unselected cell populations.
Resumo:
Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.
Resumo:
Matrix attachment regions are DNA sequences found throughout eukaryotic genomes that are believed to define boundaries interfacing heterochromatin and euchromatin domains, thereby acting as epigenetic regulators. When included in expression vectors, MARs can improve and sustain transgene expression, and a search for more potent novel elements is therefore actively pursued to further improve recombinant protein production. Here we describe the isolation of new MARs from the mouse genome using a modified in silico analysis. One of these MARs was found to be a powerful activator of transgene expression in stable transfections. Interestingly, this MAR also increased GFP and/or immunoglobulin expression from some but not all expression vectors in transient transfections. This effect was attributed to the presence or absence of elements on the vector backbone, providing an explanation for earlier discrepancies as to the ability of this class of elements to affect transgene expression under such conditions.
Resumo:
Tissue-targeted expression is of major interest for studying the contribution of cellular subpopulations to neurodegenerative diseases. However, in vivo methods to investigate this issue are limited. Here, we report an analysis of the cell specificity of expression of fluorescent reporter genes driven by six neuronal promoters, with the ubiquitous phosphoglycerate kinase 1 (PGK) promoter used as a reference. Quantitative analysis of AcGFPnuc expression in the striatum and hippocampus of rodents showed that all lentiviral vectors (LV) exhibited a neuronal tropism; however, there was substantial diversity of transcriptional activity and cell-type specificity of expression. The promoters with the highest activity were those of the 67 kDa glutamic acid decarboxylase (GAD67), homeobox Dlx5/6, glutamate receptor 1 (GluR1), and preprotachykinin 1 (Tac1) genes. Neuron-specific enolase (NSE) and dopaminergic receptor 1 (Drd1a) promoters showed weak activity, but the integration of an amplification system into the LV overcame this limitation. In the striatum, the expression profiles of Tac1 and Drd1a were not limited to the striatonigral pathway, whereas in the hippocampus, Drd1a and Dlx5/6 showed the expected restricted pattern of expression. Regulation of the Dlx5/6 promoter was observed in a disease condition, whereas Tac1 activity was unaffected. These vectors provide safe tools that are more selective than others available, for the administration of therapeutic molecules in the central nervous system (CNS). Nevertheless, additional characterization of regulatory elements in neuronal promoters is still required.
Resumo:
BACKGROUND: Sustained antibody levels are a hallmark of immunity against many pathogens, and induction of long-term durable antibody titers is an essential feature of effective vaccines. Heterologous prime-boost approaches with vectors are optimal strategies to improve a broad and prolonged immunogenicity of malaria vaccines. RESULTS: In this study, we demonstrate that the heterologous prime-boost regimen Ad35-CS/BCG-CS induces stronger immune responses by enhancing type 1 cellular producing-cells with high levels of CSp-specific IFN-γ and cytophilic IgG2a antibodies as compared to a homologous BCG-CS and a heterologous BCG-CS/CSp prime-boost regimen. Moreover, the heterologous prime-boost regimen elicits the highest level of LLPC-mediated immune responses. CONCLUSION: The increased IFN-γ-producing cell responses induced by the combination of Ad35-CS/BCG-CS and sustained type 1 antibody profile together with high levels of LLPCs may be essential for the development of long-term protective immunity against liver-stage parasites.