970 resultados para Genetic Variance-covariance Matrix
Resumo:
8 pages, 2 figures, to be published in the conference proceedings of 11th international conference "Computer Data Analysis & Modeling 2016"
Resumo:
An approach to analyzing single-nucleotide polymorphisms (SNPs) found in the human genome has been developed that couples a recently developed invasive cleavage assay for nucleic acids with detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The invasive cleavage assay is a signal amplification method that enables the analysis of SNPs by MALDI-TOF MS directly from human genomic DNA without the need for initial target amplification by PCR. The results presented here show the successful genotyping by this approach of twelve SNPs located randomly throughout the human genome. Conventional Sanger sequencing of these SNP positions confirmed the accuracy of the MALDI-TOF MS analysis results. The ability to unambiguously detect both homozygous and heterozygous genotypes is clearly demonstrated. The elimination of the need for target amplification by PCR, combined with the inherently rapid and accurate nature of detection by MALDI-TOF MS, gives this approach unique and significant advantages in the high-throughput genotyping of large numbers of SNPs, useful for locating, identifying, and characterizing the function of specific genes.
Resumo:
Two major theories of the evolution of senescence (mutation accumulation and antagonistic pleiotropy) make different predictions about the relationships between age, inbreeding effects, and the magnitude of genetic variance components of life-history components. We show that, under mutation accumulation, inbreeding decline and three major components of genetic variance are expected to increase with age in randomly mating populations. Under the simplest version of the antagonistic pleiotropy model, no changes in the severity of inbreeding decline, dominance variance, or the genetic variance of chromosomal homozygotes are expected, but additive genetic variance may increase with age. Age-specific survival rates and mating success were measured on virgin males, using lines extracted from a population of Drosophila melanogaster. For both traits, inbreeding decline and several components of genetic variance increase with age. The results are consistent with the mutation accumulation model, but can only be explained by antagonistic pleiotropy if there is a general tendency for an increase with age in the size of allelic effects on these life-history traits.
Resumo:
Acknowledgments Alexander Dürre was supported in part by the Collaborative Research Grant 823 of the German Research Foundation. David E. Tyler was supported in part by the National Science Foundation grant DMS-1407751. A visit of Daniel Vogel to David E. Tyler was supported by a travel grant from the Scottish Universities Physics Alliance. The authors are grateful to the editors and referees for their constructive comments.
Resumo:
OBJECTIVE: To better understand the structure of the Patient Assessment of Chronic Illness Care (PACIC) instrument. More specifically to test all published validation models, using one single data set and appropriate statistical tools. DESIGN: Validation study using data from cross-sectional survey. PARTICIPANTS: A population-based sample of non-institutionalized adults with diabetes residing in Switzerland (canton of Vaud). MAIN OUTCOME MEASURE: French version of the 20-items PACIC instrument (5-point response scale). We conducted validation analyses using confirmatory factor analysis (CFA). The original five-dimension model and other published models were tested with three types of CFA: based on (i) a Pearson estimator of variance-covariance matrix, (ii) a polychoric correlation matrix and (iii) a likelihood estimation with a multinomial distribution for the manifest variables. All models were assessed using loadings and goodness-of-fit measures. RESULTS: The analytical sample included 406 patients. Mean age was 64.4 years and 59% were men. Median of item responses varied between 1 and 4 (range 1-5), and range of missing values was between 5.7 and 12.3%. Strong floor and ceiling effects were present. Even though loadings of the tested models were relatively high, the only model showing acceptable fit was the 11-item single-dimension model. PACIC was associated with the expected variables of the field. CONCLUSIONS: Our results showed that the model considering 11 items in a single dimension exhibited the best fit for our data. A single score, in complement to the consideration of single-item results, might be used instead of the five dimensions usually described.
Resumo:
This work consists of three essays investigating the ability of structural macroeconomic models to price zero coupon U.S. government bonds. 1. A small scale 3 factor DSGE model implying constant term premium is able to provide reasonable a fit for the term structure only at the expense of the persistence parameters of the structural shocks. The test of the structural model against one that has constant but unrestricted prices of risk parameters shows that the exogenous prices of risk-model is only weakly preferred. We provide an MLE based variance-covariance matrix of the Metropolis Proposal Density that improves convergence speeds in MCMC chains. 2. Affine in observable macro-variables, prices of risk specification is excessively flexible and provides term-structure fit without significantly altering the structural parameters. The exogenous component of the SDF is separating the macro part of the model from the term structure and the good term structure fit has as a driving force an extremely volatile SDF and an implied average short rate that is inexplicable. We conclude that the no arbitrage restrictions do not suffice to temper the SDF, thus there is need for more restrictions. We introduce a penalty-function methodology that proves useful in showing that affine prices of risk specifications are able to reconcile stable macro-dynamics with good term structure fit and a plausible SDF. 3. The level factor is reproduced most importantly by the preference shock to which it is strongly and positively related but technology and monetary shocks, with negative loadings, are also contributing to its replication. The slope factor is only related to the monetary policy shocks and it is poorly explained. We find that there are gains in in- and out-of-sample forecast of consumption and inflation if term structure information is used in a time varying hybrid prices of risk setting. In-sample yield forecast are better in models with non-stationary shocks for the period 1982-1988. After this period, time varying market price of risk models provide better in-sample forecasts. For the period 2005-2008, out of sample forecast of consumption and inflation are better if term structure information is incorporated in the DSGE model but yields are better forecasted by a pure macro DSGE model.
Resumo:
Clines in life history traits, presumably driven by spatially varying selection, are widespread. Major latitudinal clines have been observed, for example, in Drosophila melanogaster, an ancestrally tropical insect from Africa that has colonized temperate habitats on multiple continents. Yet, how geographic factors other than latitude, such as altitude or longitude, affect life history in this species remains poorly understood. Moreover, most previous work has been performed on derived European, American and Australian populations, but whether life history also varies predictably with geography in the ancestral Afro-tropical range has not been investigated systematically. Here, we have examined life history variation among populations of D. melanogaster from sub-Saharan Africa. Viability and reproductive diapause did not vary with geography, but body size increased with altitude, latitude and longitude. Early fecundity covaried positively with altitude and latitude, whereas lifespan showed the opposite trend. Examination of genetic variance-covariance matrices revealed geographic differentiation also in trade-off structure, and QST -FST analysis showed that life history differentiation among populations is likely shaped by selection. Together, our results suggest that geographic and/or climatic factors drive adaptive phenotypic differentiation among ancestral African populations and confirm the widely held notion that latitude and altitude represent parallel gradients.
Resumo:
Généralement, dans les situations d’hypothèses multiples on cherche à rejeter toutes les hypothèses ou bien une seule d’entre d’elles. Depuis quelques temps on voit apparaître le besoin de répondre à la question : « Peut-on rejeter au moins r hypothèses ? ». Toutefois, les outils statisques pour répondre à cette question sont rares dans la littérature. Nous avons donc entrepris de développer les formules générales de puissance pour les procédures les plus utilisées, soit celles de Bonferroni, de Hochberg et de Holm. Nous avons développé un package R pour le calcul de la taille échantilonnalle pour les tests à hypothèses multiples (multiple endpoints), où l’on désire qu’au moins r des m hypothèses soient significatives. Nous nous limitons au cas où toutes les variables sont continues et nous présentons quatre situations différentes qui dépendent de la structure de la matrice de variance-covariance des données.
Resumo:
The Dirichlet family owes its privileged status within simplex distributions to easyness of interpretation and good mathematical properties. In particular, we recall fundamental properties for the analysis of compositional data such as closure under amalgamation and subcomposition. From a probabilistic point of view, it is characterised (uniquely) by a variety of independence relationships which makes it indisputably the reference model for expressing the non trivial idea of substantial independence for compositions. Indeed, its well known inadequacy as a general model for compositional data stems from such an independence structure together with the poorness of its parametrisation. In this paper a new class of distributions (called Flexible Dirichlet) capable of handling various dependence structures and containing the Dirichlet as a special case is presented. The new model exhibits a considerably richer parametrisation which, for example, allows to model the means and (part of) the variance-covariance matrix separately. Moreover, such a model preserves some good mathematical properties of the Dirichlet, i.e. closure under amalgamation and subcomposition with new parameters simply related to the parent composition parameters. Furthermore, the joint and conditional distributions of subcompositions and relative totals can be expressed as simple mixtures of two Flexible Dirichlet distributions. The basis generating the Flexible Dirichlet, though keeping compositional invariance, shows a dependence structure which allows various forms of partitional dependence to be contemplated by the model (e.g. non-neutrality, subcompositional dependence and subcompositional non-invariance), independence cases being identified by suitable parameter configurations. In particular, within this model substantial independence among subsets of components of the composition naturally occurs when the subsets have a Dirichlet distribution
Resumo:
En el presente documento se descompone la estructura a términos de las tasas de interés de los bonos soberanos de EE.UU. y Colombia. Se utiliza un modelo afín de cuatro factores, donde el primero de ellos corresponde a un factor de pronóstico de los retornos y, los demás, a los tres primeros componentes principales de la matriz de varianza-covarianza de las tasas de interés. Para la descomposición de las tasas de interés de Colombia se utiliza el factor de pronóstico de EE.UU. para capturar efectos de spillovers. Se logra concluir que las tasas en EE.UU. no tienen un efecto sobre el nivel de tasas en Colombia pero sí influyen en los excesos de retorno esperado de los bonos y también existen efectos sobre los factores locales, aunque el factor determinante de la dinámica de las tasas locales es el “nivel”. De la descomposición se obtienen las expectativas de la tasa corta y la prima por vencimiento. En ese sentido, se observa que el valor de la prima por vencimiento y su volatilidad incrementa con el vencimiento y que este valor ha venido disminuyendo en el tiempo.
Resumo:
Parent, L. E., Natale, W. and Ziadi, N. 2009. Compositional nutrient diagnosis of corn using the Mahalanobis distance as nutrient imbalance index. Can. J. Soil Sci. 89: 383-390. Compositional nutrient diagnosis (CND) provides a plant nutrient imbalance index (CND - r(2)) with assumed chi(2) distribution. The Mahalanobis distance D(2), which detects outliers in compositional data sets, also has a chi(2) distribution. The objective of this paper was to compare D(2) and CND - r(2) nutrient imbalance indexes in corn (Zea mays L.). We measured grain yield as well as N, P, K, Ca, Mg, Cu, Fe, Mn, and Zn concentrations in the ear leaf at silk stage for 210 calibration sites in the St. Lawrence Lowlands [2300-2700 corn thermal units (CTU)] as well as 30 phosphorus (2300-2700 CTU; 10 sites) and 10 nitrogen (1900-2100 CTU; one site) replicated fertilizer treatments for validation. We derived CND norms as mean, standard deviation, and the inverse covariance matrix of centred log ratios (clr) for high yielding specimens (>= 9.0 Mg grain ha(-1) at 150 g H(2)O kg(-1) moisture content) in the 2300-2700 CTU zone. Using chi(2) = 17 (P < 0.05) with nine degrees of freedom (i.e., nine nutrients) as a rejection criterion for outliers and a yield threshold of 8.6 Mg ha(-1) after Cate-Nelson partitioning between low- and high-yielders in the P validation data set, D(2) misclassified two specimens compared with nine for CND -r(2). The D(2) classification was not significantly different from a chi(2) classification (P > 0.05), but the CND - r(2) classification differed significantly from chi(2) or D(2) (P < 0.001). A threshold value for nutrient imbalance could thus be derived probabilistically for conducting D(2) diagnosis, while the CND - r(2) nutrient imbalance threshold must be calibrated using fertilizer trials. In the proposed CND - D(2) procedure, D(2) is first computed to classify the specimen as possible outlier. Thereafter, nutrient indices are ranked in their order of limitation. The D(2) norms appeared less effective in the 1900-2100 CTU zone.
Resumo:
In this article we introduce a three-parameter extension of the bivariate exponential-geometric (BEG) law (Kozubowski and Panorska, 2005) [4]. We refer to this new distribution as the bivariate gamma-geometric (BGG) law. A bivariate random vector (X, N) follows the BGG law if N has geometric distribution and X may be represented (in law) as a sum of N independent and identically distributed gamma variables, where these variables are independent of N. Statistical properties such as moment generation and characteristic functions, moments and a variance-covariance matrix are provided. The marginal and conditional laws are also studied. We show that BBG distribution is infinitely divisible, just as the BEG model is. Further, we provide alternative representations for the BGG distribution and show that it enjoys a geometric stability property. Maximum likelihood estimation and inference are discussed and a reparametrization is proposed in order to obtain orthogonality of the parameters. We present an application to a real data set where our model provides a better fit than the BEG model. Our bivariate distribution induces a bivariate Levy process with correlated gamma and negative binomial processes, which extends the bivariate Levy motion proposed by Kozubowski et al. (2008) [6]. The marginals of our Levy motion are a mixture of gamma and negative binomial processes and we named it BMixGNB motion. Basic properties such as stochastic self-similarity and the covariance matrix of the process are presented. The bivariate distribution at fixed time of our BMixGNB process is also studied and some results are derived, including a discussion about maximum likelihood estimation and inference. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This paper introduces a novel approach to making inference about the regression parameters in the accelerated failure time (AFT) model for current status and interval censored data. The estimator is constructed by inverting a Wald type test for testing a null proportional hazards model. A numerically efficient Markov chain Monte Carlo (MCMC) based resampling method is proposed to simultaneously obtain the point estimator and a consistent estimator of its variance-covariance matrix. We illustrate our approach with interval censored data sets from two clinical studies. Extensive numerical studies are conducted to evaluate the finite sample performance of the new estimators.