895 resultados para Galerkin weak form
Resumo:
To comprehend the recent Brookhaven National Laboratory experiment E788 on (4)(Lambda)He, we have outlined a simple theoretical framework. based on the independent-particle shell model, for the one-nucleon-induced nonmesonic weak decay spectra. Basically, the shapes of all the spectra are tailored by the kinematics of the corresponding phase space, depending very weakly on the dynamics, which is gauged here by the one-meson-exchange potential. In spite of the straightforwardness of the approach a good agreement with data is achieved. This might be an indication that the final-state-interactions and the two-nucleon induced processes are not very important in the decay of this hypernucleus. We have also found that the pi + K exchange potential with soft vertex-form-factor cutoffs (Lambda(pi) approximate to 0.7 GeV, Lambda(K) approximate to 0.9 GeV), is able to account simultaneously for the available experimental data related to Gamma(p) and Gamma(n) for (4)(Lambda)H, (4)(Lambda)H, and (5)(Lambda)H. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Polyfluorene end-capped with N-(2-benzothiazole)-1 8-naphthalimide (PF-BNI) is a highly fluorescent material with fluorescence emission modulated by solvent polarity Its low energy excited state is assigned as a mixed configuration state between the singlet S(1) of the fluorene backbone (F) with the charge transfer (CI) of the end group BNI The triexponential fluorescence decays of PF-BNI were associated with fast energy migration to form an intrachain charge-transfer (ICCT) state polyfluorene backbone decay and ICCT deactivation Time-resolved fluorescence anisotropy exhibited biexponential relaxation with a fast component of 12-16 ps in addition to a slow one in the range 0 8-1 4 ns depending on the solvent showing that depolarization occurs from two different processes energy migration to form the ICCT state and slow rotational diffusion motion of end segments at a longer time Results from femtosecond transient absorption measurements agreed with anisotropy decay and showed a decay component of about 16 ps at 605 nm in PF BNI ascribed to the conversion of S(1) to the ICCT excited state From the ratio of asymptotic and initial amplitudes of the transient absorption measurement the efficiency of intrachain ICCT formation is estimated in 0 5 which means that on average, half of the excited state formed in a BNI-(F)(n)-BNI chain with n = 32 is converted to its low energy intrachain charge-transfer (ICCT) state
Resumo:
The kaon electromagnetic (e.m.) form factor is reviewed considering a light-front constituent quark model. In this approach, it is discussed the relevance of the quark-antiquark pair terms for the full covariance of the e.m. current. It is also verified, by considering a QCD dynamical model, that a good agreement with experimental data can be obtained for the kaon weak decay constant once a probability of about 80% of the valence component is taken into account.
Resumo:
We study the scaling of the S-3(1)-S-1(0) meson mass splitting and the pseudoscalar weak-decay constants with the mass of the meson, as seen in the available experimental data. We use an effective light-front QCD-inspired dynamical model regulated at short distances to describe the valence component of the pseudoscalar mesons. The experimentally known values of the mass splitting, decay constants (from global lattice-QCD averages) and the pion charge form factor up to 4 [GeV/c](2) are reasonably described by the model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate the effects induced by excited leptons, at the one-loop level, in the anomalous magnetic and weak-magnetic form factors of the leptons. In particular, we compute their contributions to the weak-magnetic moment of the tau lepton, which can be measured on the Z peak, and we compare it with the contributions to g(mu) - 2, measured at low energies.
Resumo:
After a short introduction to the nonmesonic weak decay (NMWD) ΛN→nN of Λ-hypernuclei we discuss the long-standing puzzle on the ratio Γn/Γp, and some recent experimental evidences that signalized towards its final solution. Two versions of the Independent-Particle-Shell-Model (IPSM) are employed to account for the nuclear structure of the final residual nuclei. They are: (a) IPSM-a, where no correlation, except for the Pauli principle, is taken into account, and (b) IPSM-b, where the highly excited hole states are considered to be quasi-stationary and are described by Breit-Wigner distributions, whose widths are estimated from the experimental data. We evaluate the coincidence spectra in Λ 4He, Λ 5He, Λ 12C, Λ 16O, and Λ 28Si, as a function of the sum of kinetic energies EnN=En+EN for N=n, p. The recent Brookhaven National Laboratory experiment E788 on Λ 4He, is interpreted within the IPSM. We found that the shapes of all the spectra are basically tailored by the kinematics of the corresponding phase space, depending very weakly on the dynamics, which is gauged here by the one-meson-exchange- potential. In spite of the straightforwardness of the approach a good agreement with data is achieved. This might be an indication that the final-state- interactions and the two-nucleon induced processes are not very important in the decay of this hypernucleus. We have also found that the π+K exchange potential with soft vertex-form-factor cutoffs (Λπ≈0. 7GeV, ΛK≈0.9GeV), is able to account simultaneously for the available experimental data related to Γp and Γn for Λ 4H, and Λ 5He. © 2010 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The quark condensate is a fundamental free parameter of Chiral Perturbation Theory ($chi PT$), since it determines the relative size of the mass and momentum terms in the power expansion. In order to confirm or contradict the assumption of a large quark condensate, on which $chi PT$ is based, experimental tests are needed. In particular, the $S$-wave $pipi$ scattering lengths $a_0^0$ and $a_0^2$ can be predicted precisely within $chi PT$ as a function of this parameter and can be measured very cleanly in the decay $K^{pm} to pi^{+} pi^{-} e^{pm} stackrel{mbox{tiny(---)}}{nu_e}$ ($K_{e4}$). About one third of the data collected in 2003 and 2004 by the NA48/2 experiment were analysed and 342,859 $K_{e4}$ candidates were selected. The background contamination in the sample could be reduced down to 0.3% and it could be estimated directly from the data, by selecting events with the same signature as $K_{e4}$, but requiring for the electron the opposite charge with respect to the kaon, the so-called ``wrong sign'' events. This is a clean background sample, since the kaon decay with $Delta S=-Delta Q$, that would be the only source of signal, can only take place through two weak decays and is therefore strongly suppressed. The Cabibbo-Maksymowicz variables, used to describe the kinematics of the decay, were computed under the assumption of a fixed kaon momentum of 60 GeV/$c$ along the $z$ axis, so that the neutrino momentum could be obtained without ambiguity. The measurement of the form factors and of the $pipi$ scattering length $a_0^0$ was performed in a single step by comparing the five-dimensional distributions of data and MC in the kinematic variables. The MC distributions were corrected in order to properly take into account the trigger and selection efficiencies of the data and the background contamination. The following parameter values were obtained from a binned maximum likelihood fit, where $a_0^2$ was expressed as a function of $a_0^0$ according to the prediction of chiral perturbation theory: f'_s/f_s = 0.133+- 0.013(stat)+- 0.026(syst) f''_s/f_s = -0.041+- 0.013(stat)+- 0.020(syst) f_e/f_s = 0.221+- 0.051(stat)+- 0.105(syst) f'_e/f_s = -0.459+- 0.170(stat)+- 0.316(syst) tilde{f_p}/f_s = -0.112+- 0.013(stat)+- 0.023(syst) g_p/f_s = 0.892+- 0.012(stat)+- 0.025(syst) g'_p/f_s = 0.114+- 0.015(stat)+- 0.022(syst) h_p/f_s = -0.380+- 0.028(stat)+- 0.050(syst) a_0^0 = 0.246+- 0.009(stat)+- 0.012(syst)}+- 0.002(theor), where the statistical uncertainty only includes the effect of the data statistics and the theoretical uncertainty is due to the width of the allowed band for $a_0^2$.
Resumo:
In this Thesis we consider a class of second order partial differential operators with non-negative characteristic form and with smooth coefficients. Main assumptions on the relevant operators are hypoellipticity and existence of a well-behaved global fundamental solution. We first make a deep analysis of the L-Green function for arbitrary open sets and of its applications to the Representation Theorems of Riesz-type for L-subharmonic and L-superharmonic functions. Then, we prove an Inverse Mean value Theorem characterizing the superlevel sets of the fundamental solution by means of L-harmonic functions. Furthermore, we establish a Lebesgue-type result showing the role of the mean-integal operator in solving the homogeneus Dirichlet problem related to L in the Perron-Wiener sense. Finally, we compare Perron-Wiener and weak variational solutions of the homogeneous Dirichlet problem, under specific hypothesis on the boundary datum.
Resumo:
The goal of the AEgIS experiment is to measure the gravitational acceleration of antihydrogen – the simplest atom consisting entirely of antimatter – with the ultimate precision of 1%. We plan to verify the Weak Equivalence Principle (WEP), one of the fundamental laws of nature, with an antimatter beam. The experiment consists of a positron accumulator, an antiproton trap and a Stark accelerator in a solenoidal magnetic field to form and accelerate a pulsed beam of antihydrogen atoms towards a free-fall detector. The antihydrogen beam passes through a moir ́e deflectometer to measure the vertical displacement due to the gravitational force. A position and time sensitive hybrid detector registers the annihilation points of the antihydrogen atoms and their time-of-flight. The detection principle has been successfully tested with antiprotons and a miniature moir ́e deflectometer coupled to a nuclear emulsion detector.
Resumo:
Se desarrollan varias técnicas basadas en descomposición ortogonal propia (DOP) local y proyección de tipo Galerkin para acelerar la integración numérica de problemas de evolución, de tipo parabólico, no lineales. Las ideas y métodos que se presentan conllevan un nuevo enfoque para la modelización de tipo DOP, que combina intervalos temporales cortos en que se usa un esquema numérico estándard con otros intervalos temporales en que se utilizan los sistemas de tipo Galerkin que resultan de proyectar las ecuaciones de evolución sobre la variedad lineal generada por los modos DOP, obtenidos a partir de instantáneas calculadas en los intervalos donde actúa el código numérico. La variedad DOP se construye completamente en el primer intervalo, pero solamente se actualiza en los demás intervalos según las dinámicas de la solución, aumentando de este modo la eficiencia del modelo de orden reducido resultante. Además, se aprovechan algunas propiedades asociadas a la dependencia débil de los modos DOP tanto en la variable temporal como en los posibles parámetros de que pueda depender el problema. De esta forma, se aumentan la flexibilidad y la eficiencia computacional del proceso. La aplicación de los métodos resultantes es muy prometedora, tanto en la simulación de transitorios en flujos laminares como en la construcción de diagramas de bifurcación en sistemas dependientes de parámetros. Las ideas y los algoritmos desarrollados en la tesis se ilustran en dos problemas test, la ecuación unidimensional compleja de Ginzburg-Landau y el problema bidimensional no estacionario de la cavidad. Abstract Various ideas and methods involving local proper orthogonal decomposition (POD) and Galerkin projection are presented aiming at accelerating the numerical integration of nonlinear time dependent parabolic problems. The proposed methods come from a new approach to the POD-based model reduction procedures, which combines short runs with a given numerical solver and a reduced order model constructed by expanding the solution of the problem into appropriate POD modes, which span a POD manifold, and Galerkin projecting some evolution equations onto that linear manifold. The POD manifold is completely constructed from the outset, but only updated as time proceeds according to the dynamics, which yields an adaptive and flexible procedure. In addition, some properties concerning the weak dependence of the POD modes on time and possible parameters in the problem are exploited in order to increase the flexibility and efficiency of the low dimensional model computation. Application of the developed techniques to the approximation of transients in laminar fluid flows and the simulation of attractors in bifurcation problems shows very promising results. The test problems considered to illustrate the various ideas and check the performance of the algorithms are the onedimensional complex Ginzburg-Landau equation and the two-dimensional unsteady liddriven cavity problem.
Resumo:
En esta tesis, el método de estimación de error de truncación conocido como restimation ha sido extendido de esquemas de bajo orden a esquemas de alto orden. La mayoría de los trabajos en la bibliografía utilizan soluciones convergidas en mallas de distinto refinamiento para realizar la estimación. En este trabajo se utiliza una solución en una única malla con distintos órdenes polinómicos. Además, no se requiere que esta solución esté completamente convergida, resultando en el método conocido como quasi-a priori T-estimation. La aproximación quasi-a priori estima el error mientras el residuo del método iterativo no es despreciable. En este trabajo se demuestra que algunas de las hipótesis fundamentales sobre el comportamiento del error, establecidas para métodos de bajo orden, dejan de ser válidas en esquemas de alto orden, haciendo necesaria una revisión completa del comportamiento del error antes de redefinir el algoritmo. Para facilitar esta tarea, en una primera etapa se considera el método conocido como Chebyshev Collocation, limitando la aplicación a geometrías simples. La extensión al método Discontinuouos Galerkin Spectral Element Method presenta dificultades adicionales para la definición precisa y la estimación del error, debidos a la formulación débil, la discretización multidominio y la formulación discontinua. En primer lugar, el análisis se enfoca en leyes de conservación escalares para examinar la precisión de la estimación del error de truncación. Después, la validez del análisis se demuestra para las ecuaciones incompresibles y compresibles de Euler y Navier Stokes. El método de aproximación quasi-a priori r-estimation permite desacoplar las contribuciones superficiales y volumétricas del error de truncación, proveyendo información sobre la anisotropía de las soluciones así como su ratio de convergencia con el orden polinómico. Se demuestra que esta aproximación quasi-a priori produce estimaciones del error de truncación con precisión espectral. ABSTRACT In this thesis, the τ-estimation method to estimate the truncation error is extended from low order to spectral methods. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, only one grid with different polynomial orders is used in this work. Furthermore, a non timeconverged solution is used resulting in the quasi-a priori τ-estimation method. The quasi-a priori approach estimates the error when the residual of the time-iterative method is not negligible. It is shown in this work that some of the fundamental assumptions about error tendency, well established for low order methods, are no longer valid in high order schemes, making necessary a complete revision of the error behavior before redefining the algorithm. To facilitate this task, the Chebyshev Collocation Method is considered as a first step, limiting their application to simple geometries. The extension to the Discontinuous Galerkin Spectral Element Method introduces additional features to the accurate definition and estimation of the error due to the weak formulation, multidomain discretization and the discontinuous formulation. First, the analysis focuses on scalar conservation laws to examine the accuracy of the estimation of the truncation error. Then, the validity of the analysis is shown for the incompressible and compressible Euler and Navier Stokes equations. The developed quasi-a priori τ-estimation method permits one to decouple the interfacial and the interior contributions of the truncation error in the Discontinuous Galerkin Spectral Element Method, and provides information about the anisotropy of the solution, as well as its rate of convergence in polynomial order. It is demonstrated here that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.