936 resultados para GROWTH-MODEL
Resumo:
The simple model relating food conversion efficiency (K sub(1)) to body weight derived from the theoretical concepts behind von Bertalanffy's growth model, is extended here in the context of Pauly's generalization of that model. The exponent, which was fixed to 1/3 in the simple model, is in the extended model equivalent to 1-d, with d being the weight exponent of the anabolism term in Pauly's growth model. This makes the model applicable to fish for which the assumptions of the original (special) version of von Bertalanffy's growth model are violated.
Resumo:
A model to estimate the mean monthly growth of Crassostrea virginica oysters in Chesapeake Bay was developed. This model is based on the classic von Bertalanffy growth function, however the growth constant is changed every monthly timestep in response to short term changes in temperature and salinity. Using a dynamically varying growth constant allows the model to capture seasonal oscillations in growth, and growth responses to changing environmental conditions that previous applications of the von Bertalanffy model do not capture. This model is further expanded to include an estimation of Perkinsus marinus impacts on growth rates as well as estimations of ecosystem services provided by a restored oyster bar over time. The model was validated by comparing growth estimates from the model to oyster shell height observations from a variety of restoration sites in the upper Chesapeake Bay. Without using the P. marinus impact on growth, the model consistently overestimates mean oyster growth. However, when P. marinus effects are included in the model, the model estimates match the observed mean shell height closely for at least the first 3 years of growth. The estimates of ecosystem services suggested by this model imply that even with high levels of mortality on an oyster reef, the ecosystem services provided by that reef can still be maintained by growth for several years. Because larger oyster filter more water than smaller ones, larger oysters contribute more to the filtration and nutrient removal ecosystem services of the reef. Therefore a reef with an abundance of larger oysters will provide better filtration and nutrient removal. This implies that if an oyster restoration project is trying to improve water quality through oyster filtration, it is important to maintain the larger older oysters on the reef.
Resumo:
The quality of single crystal diamond obtained by microwave CVD processes has been drastically improved in the last 5 years thanks to surface pretreatment of the substrates [A. Tallaire, J. Achard, F. Silva, R.S. Sussmann, A. Gicquel, E. Rzepka, Physica Status Solidi (A) 201, 2419-2424 (2004); G. Bogdan, M. Nesladek, J. D'Haen, J. Maes, V.V. Moshchalkov, K. Haenen, M. D'Olieslaeger, Physica Status Solidi (A) 202, 2066-2072 (2005); M. Yamamoto, T. Teraji, T. Ito, Journal of Crystal Growth 285, 130-136 (2005)]. Additionally, recent results have unambiguously shown the occurrence of (110) faces on crystal edges and (113) faces on crystal corners [F. Silva, J. Achard, X. Bonnin, A. Michau, A. Tallaire, O. Brinza, A. Gicquel, Physica Status Solidi (A) 203, 3049-3055 (2006)]. We have developed a 3D geometrical growth model to account for the final crystal morphology. The basic parameters of this growth model are the relative displacement speeds of (111), (110) and (113) faces normalized to that of the (100) faces, respectively alpha, beta, and gamma. This model predicts both the final equilibrium shape of the crystal (i.e. after infinite growth time) and the crystal morphology as a function of alpha, beta, gamma, and deposition time.
An optimized operating point, deduced from the model, has been validated experimentally by measuring the growth rate in (100), (111), (110), and (113) orientations. Furthermore, the evolution of alpha, beta, gamma as a function of methane concentration in the gas discharge has been established. From these results, crystal growth strategies can be proposed in order, for example, to enlarge the deposition area. In particular, we will show, using the growth model, that the only possibility to significantly increase the deposition area is, for our growth conditions, to use a (113) oriented substrate. A comparison between the grown crystal and the model results will be discussed and characterizations of the grown film (Photoluminescence spectroscopy, EPR, SEM) will be presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.
Resumo:
We characterize optimal policy in a two-sector growth model with xed coeÆcients and with no discounting. The model is a specialization to a single type of machine of a general vintage capital model originally formulated by Robinson, Solow and Srinivasan, and its simplicity is not mirrored in its rich dynamics, and which seem to have been missed in earlier work. Our results are obtained by viewing the model as a specific instance of the general theory of resource allocation as initiated originally by Ramsey and von Neumann and brought to completion by McKenzie. In addition to the more recent literature on chaotic dynamics, we relate our results to the older literature on optimal growth with one state variable: speci cally, to the one-sector setting of Ramsey, Cass and Koopmans, as well as to the two-sector setting of Srinivasan and Uzawa. The analysis is purely geometric, and from a methodological point of view, our work can be seen as an argument, at least in part, for the rehabilitation of geometric methods as an engine of analysis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Initial crack widely exists in the welded members of steel bridge induced by the welding procedure or by the fatigue damage crack initiation. The behavior of crack growth with a view to fatigue damage accumulation on the tip of cracks is discussed. Fatigue life of welded components with initial crack in bridges under traffic loading is investigated. Based on existing fatigue experiment results of welded members with initial crack and the fatigue experiment results of welded bridge members under constant stress cycles, the crack would keep semi-elliptical shape with variable ratio of a/c during the crack propagation. Based on the concept of continuum damage accumulated on the tip of fatigue cracks,the fatigue damage law suitable for steel bridge members under traffic loading is modified to consider the crack growth.The virtual crack growth method and the semi-elliptical crack shape assumption are proposed in this paper to deduce a new model of fatigue crack growth rate for welded bridge members under traffic loading. And the calculated method of the stress intensity factor necessary for evaluation of the fatigue life of welded bridge members with cracks is discussed.The proposed fatigue crack growth model is then applied to calculate the crack growth and the fatigue life of existing welded members with fatigue experimental results. The fatigue crack propagation computation results show that the ratio of crack depth to the half crack surface length a/c is variable during crack propagation process and the stress cycle increases with the increase of a0/c0 with certain a0/t0 .The calculated and measured fatigue lives are generally in good agreement,at some initial conditions of cracking, for welded members widely used in steel bridges.
Resumo:
Recent management research has evidenced the significance of organizational social networks, and communication is believed to impact the interpersonal relationships. However, we have little knowledge on how communication affects organizational social networks. This paper studies the dynamics between organizational communication patterns and the growth of organizational social networks. We propose an organizational social network growth model, and then collect empirical data to test model validity. The simulation results agree well with the empirical data. The results of simulation experiments enrich our knowledge on communication with the findings that organizational management practices that discourage employees from communicating within and across group boundaries have disparate and significant negative effect on the social network’s density, scalar assortativity and discrete assortativity, each of which correlates with the organization’s performance. These findings also suggest concrete measures for management to construct and develop the organizational social network.
Resumo:
We develop a stochastic endogenous growth model to explain the diversity in growth and inequality patterns and the non-convergence of incomes in transitional economies where an underdeveloped financial sector imposes an implicit, fixed cost on the diversification of idiosyncratic risk. In the model endogenous growth occurs through physical and human capital deepening, with the latter being the more dominant element. We interpret the fixed cost as a ‘learning by doing’ cost for entrepreneurs who undertake risk in the absence of well developed financial markets and institutions that help diversify such risk. As such, this cost may be interpreted as the implicit returns foregone due to the lack of diversification opportunities that would otherwise have been available, had such institutions been present. The analytical and numerical results of the model suggest three growth outcomes depending on the productivity differences between the projects and the fixed cost associated with the more productive project. We label these outcomes as poverty trap, dual economy and balanced growth. Further analysis of these three outcomes highlights the existence of a diversity within diversity. Specifically, within the ‘poverty trap’ and ‘dual economy’ scenarios growth and inequality patterns differ, depending on the initial conditions. This additional diversity allows the model to capture a richer range of outcomes that are consistent with the empirical experience of several transitional economies.
Resumo:
A numerical growth model is used to describe the catalyzed growth of carbon nanofibers in the sheath of a low-temperature plasma. Using the model, the effects of variation in the plasma sheath parameters and substrate potential on the carbon nanofiber growth characteristics, such as the growth rate, the effective carbon flux to the catalyst surface, and surface coverages, have been investigated. It is shown that variations in the parameters, which change the sheath width, mainly affect the growth parameters at the low catalyst temperatures, whereas the other parameters such as the gas pressure, ion temperature, and percentages of the hydrocarbon and etching gases, strongly affect the carbon nanofiber growth at higher temperatures. The conditions under which the carbon nanofiber growth can still proceed under low nanodevice-friendly process temperatures have been formulated and summarized. These results are consistent with the available experimental results and can also be used for catalyzed growth of other high-aspect-ratio nanostructures in low-temperature plasmas.
Resumo:
A theoretical model describing the plasma-assisted growth of carbon nanofibres (CNFs) that accounts for the nanostructure heating by ion and etching gas fluxes from the plasma is developed. Using the model, it is shown that fluxes from the plasma environment can substantially increase the temperature of the catalyst nanoparticle located on the top of the CNF with respect to the substrate temperature. The difference between the catalyst and the substrate temperatures depends on the substrate width, the length of the CNF, the neutral gas density and temperature as well as the densities of the ions and atoms of the etching gas. In addition to the heating of the nanostructure, the ions and etching gas atoms from the ionized gas environment also strongly affect the CNF growth rates. Due to ion bombardment, the CNF growth rates in plasma enhanced chemical vapour deposition may be much higher than the rates in similar neutral gas-based thermal processes. The CNF growth model, which accounts for the nanostructure heating by the plasma-generated species, provides the growth rates that are in better agreement with the available experimental data on CNF growth than the models in which the heating effects are ignored.
Resumo:
Introduction & Aims Optimising fracture treatments requires a sound understanding of relationships between stability, callus development and healing outcomes. This has been the goal of computational modelling, but discrepancies remain between simulations and experimental results. We compared healing patterns vs fixation stiffness between a novel computational callus growth model and corresponding experimental data. Hypothesis We hypothesised that callus growth is stimulated by diffusible signals, whose production is in turn regulated by mechanical conditions at the fracture site. We proposed that introducing this scheme into computational models would better replicate the observed tissue patterns and the inverse relationship between callus size and fixation stiffness. Method Finite element models of bone healing under stiff and flexible fixation were constructed, based on the parameters of a parallel rat femoral osteotomy study. An iterative procedure was implemented, to simulate the development of callus and its mechanical regulation. Tissue changes were regulated according to published mechano-biological criteria. Predictions of healing patterns were compared between standard models, with a pre-defined domain for callus development, and a novel approach, in which periosteal callus growth is driven by a diffusible signal. Production of this signal was driven by local mechanical conditions. Finally, each model’s predictions were compared to the corresponding histological data. Results Models in which healing progressed within a prescribed callus domain predicted that greater interfragmentary movements would displace early periosteal bone formation further from the fracture. This results from artificially large distortional strains predicted near the fracture edge. While experiments showed increased hard callus size under flexible fixation, this was not reflected in the standard models. Allowing the callus to grow from a thin soft tissue layer, in response to a mechanically stimulated diffusible signal, results in a callus shape and tissue distribution closer to those observed histologically. Importantly, the callus volume increased with increasing interfragmentary movement. Conclusions A novel method to incorporate callus growth into computational models of fracture healing allowed us to successfully capture the relationship between callus size and fixation stability observed in our rat experiments. This approach expands our toolkit for understanding the influence of different fixation strategies on healing outcomes.
Resumo:
Identification of vulnerable plaque pre-rupture is extremely important for patient risk stratification. The mechanism of plaque rupture is still not entirely clear, but it is thought to be a process involving multiple factors. From a biomechanical viewpoint, plaque rupture is usually seen as a structural failure when the plaque cannot resist the hemodynamic blood pressure and shear stress exerted on it. However, the cardiovascular system is naturally a cyclical hemodynamic environment, and myocardial infarction can be a symptomatically quiescent but potentially progressive process when plaque ruptures at stresses much lower than its strength. Therefore, fatigue accumulation is a possible mechanism for plaque rupture. In this study, a crack growth model was developed, and the previously-mentioned hypothesis was tested by conducting a comparative study between 18 symptomatic and 16 asymptomatic patients with carotid stenosis.
Resumo:
The nucleataon growth model of electrochemical phase formation is analysed for the hnear potential sweep input Apart from deducing diagnostic criteria and method~ of estimating model parameters, the predictions of the nucleation growth model are compared and contrasted with those of a sample adsorption model A dastlnCtlOn is made possible between adsorption and phase transition, which seems useful for understanding the nature of ECPF phenomena, especially underpotentlal deposition (UPD).