986 resultados para GLASS SUBSTRATE
Resumo:
A new composition content quaternary-alloy-based phase change thin film, Sb-rich AgInSbTe, has been prepared by DC-magnetron sputtering on a K9 glass substrate. After the film has been subsequently annealed at 200degreesC for 30 min, it becomes a crystalline thin film. The diffraction peak of antimony (Sb) are observed by shallow (0.5 degree) x-ray diffraction in the quaternary alloy thin film. The analyses of the measurement from differential scanning calorimetry (DSC) show that the crystallization temperature of the phase change thin film is about 190degreesC and increases with the heating rate. By Kissinger plot, the activation energy for crystallization is determined to be 3.05eV. The reflectivity, refractive index and extinction coefficient of the crystalline and amorphous phase change thin films are presented. The optical absorption coefficient of the phase change thin films as a function of photon energy is obtained from the extinction coefficient. The optical band gaps of the amorphous and crystallization phase change thin films are 0.265eV and 1.127eV, respectively.
Resumo:
Optical transmission through flat media should be smaller than 1. However, we have observed optical transmission up to T=1.18. The samples were ZnS-SiO2/AgOx/ZnS-SiO2 sandwiched thin films on glass substrate. The supertransmission could only be observed in the near field. We attribute the supertransmission to the lateral propagation relayed by the laser activated and decomposed Ag nanoparticles. (c) 2006 American Institute of Physics.
Optical parameters and absorption of copper (II)-azo complexes thin films as optical recording media
Resumo:
Smooth thin films of three kinds of azo dyes of 2-(5'-tert-butyl-3'-azoxylisoxazole)-1, 3-diketones and their copper (II)-azo complexes were prepared by the spin-coating method. Absorption spectra of the thin films on a glass substrate in the 300-600 nm wavelength region were measured. Optical constants (complex refractive index N=n+ik) and thickness of the thin films prepared on single-crystal silicon substrate in the 300-600 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constants epsilon(epsilon=epsilon(1)+i epsilon(2)), absorption coefficients alpha as well as reflectance R of thin films were then calculated. In addition, one of the copper (II)-azo complex thin film prepared on glass substrate with an Ag reflective layer was also studied by atomic force microscopy (AFM) and static optical recording. AFM study shows that the copper (II)-azo complex thin film is very smooth and has a root mean square surface roughness of 1.89 nm. Static optical recording shows that the recording marks on the copper (II)-azo complex thin film are very clear and circular, and the size of the minimal recording marks can reach 200 nm. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Smooth thin films of three kinds of nickel(II)-azo complexes were prepared by the spin-coating method. Absorption spectra of the thin films on K9 glass substrate in the 300-600 nn wavelength region were measured. Optical constants (complex refractive index N = n + ik) and thickness of the thin films prepared on single-crystal silicon substrate in the 300-600 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constants epsilon (epsilon = epsilon(1) + i epsilon(2)), absorption coefficients a as well as reflectance R of thin films were then calculated at 405 nm. In addition, in order to examine the possible use of nickel(II)-azo complex thin film as an optical recording medium, one of the nickel(II)-azo complex thin film prepared on K9 glass substrate with an Ag reflective layer was also studied by atomic force microscopy and static optical recording. The results show that the nickel(II)-azo complex thin film is smooth and has a root mean square surface roughness of 2.25 nm, and the recording marks on the nickel(II)-azo complex thin film are very clear and circular, and their size can reach 200 nn or less. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Writing computer-generated holograms has been achieved by using near infrared femtosecond laser selective ablation of metal film deposited on glass substrate. The diffraction features with data reconstruction of fabricated computer-generated holograms were evaluated. Both transmission and reflection holograms can be fabricated in a single process. The process required no mask, no pre- or post-treatment of the substrate. (C) 2005 Optical Society of America.
Resumo:
提出了一种新的制备光栅的方法,利用800nm的飞秒激光扫描蒸镀在石英玻璃衬底表面的金薄膜,通过烧蚀金薄膜在衬底表面形成衍射光栅。用波长为532nm的激光照射光栅,测量其一级衍射效率,测得的衍射效率最高为6.98%。通过改变激光扫描速度、激光功率、光栅周期等实验参数研究其对制备的光栅的一级衍射效率的影响,结果表明,降低激光扫描速度,减小光栅周期,或增加激光功率都能提高制备光栅的一级衍射效率。
Resumo:
We report on an optical interference method to fabricate arrayed holes on metal nickel foil and aluminum film deposited on glass substrate by means of five-beam interference of femtosecond laser pulses. Optical microscope and scanning electron microscope observations revealed that arrayed holes of micrometre-order were fabricated on both metal foil and metal film. The present technique allows one-step, large-area, micrometric processing of metal materials for potential industrial applications.
Resumo:
The antireflection properties of triangular shaped gratings are studied by a combination of the effective medium theory and the anisotropic thin-film theory. The triangular shaped structures are analyzed as a function of grating period, filling factor, and groove depth, and the antireflective characteristics are also studied when visible-infrared light is incident upon them. Numerical examples are given for gratings on glass substrate with refractive index of 1.5. The results show that this kind of grating is capable of reducing reflections, and could achieve very low reflectivity over a wide field of view and a wide waveband by choosing appropriate parameters.
Resumo:
Glancing angle deposition is a novel method to prepare graded index coatings. By using this method and physical vapour deposition, ZrO2 is used to engineer graded index filter on BK7 glass substrate. Controlling the deposition rate and the periodic oscillation of oblique angle of deposited material, a 10-period graded index ZrO2 filter with high reflection near 532 nm and high transmittance at wavelength 1064 nm is fabricated. The causes of difference between the theoretical and experimental results are discussed in detail. The material properties and electron gun nonlinearity are possibly the main origins of the difference, which result in the variations in both thickness control and deposition rate of the Elm material.
Resumo:
研究了在玻璃基底上镀制Al2O3和Cr过渡层对Ag膜反射率及附着力的影响.分光光度计测试了Ag膜的反射率,结果表明,与Cr过渡层相比,Al2O3过渡层对Ag膜反射率的降低相对较小;而且,随着Al2O3厚度的增加,Ag膜的反射率先增大后减小.XRD与AES测试表明,引入Al2O3或Cr可明显细化Ag晶粒,减弱Ag膜(111)织构;Al2O3作过渡层时,Al原子向Ag层中扩散显著;而Cr作过渡层时,只有少量Cr原子扩散进入Ag层.因此,Al2O3作过渡层能显著增强薄膜与玻璃基体之间的附着力.
Resumo:
Quantitative microbeam Rutherford backscattering (RBS) analysis with a 1.5 MeV 4He+ beam has determined limits on the purity of copper deposited on glass with a novel inkjet process. A tetravinyl silane tetrakisCu(I) 1,1,1,5,5,5-hexafluoroacetylacetonate (TVST[Cu]hfac) complex was heated to 70 °C and jetted onto the glass substrate through a piezoelectric ceramic print head in droplets about 0.5 mm diameter. The substrate temperature was 150 °C. Solid well-formed deposits resulted which have a copper content greater than about 90% by weight. The RBS spectra were analysed objectively using the DataFurnace code, with the assumption that the deposit was CuOx, and the validity of different assumed values of x being tested. The assumptions and the errors of the analysis are critically evaluated. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
ZnO thin films were deposited on glass substrates at room temperature (RT) similar to 500 degrees C by pulsed laser deposition (PLD) technique and then were annealed at 150-450 degrees C in air. The effects of annealing temperature on the microstructure and optical properties of the thin films deposited at each substrate temperature were investigated by XRD, SEM, transmittance spectra, and photoluminescence (PL). The results showed that the c-axis orientation of ZnO thin films was not destroyed by annealing treatments: the grain size increased and stress relaxed for the films deposited at 200-500 degrees C, and thin films densified for the films deposited at RT with increasing annealing temperature. The transmittance spectra indicated that E-g of thin films showed a decreased trend with annealing temperature. From the PL measurements, there was a general trend, that is UV emission enhanced with lower annealing temperature and disappeared at higher annealing temperature for the films deposited at 200-500 degrees C; no UV emission was observed for the films deposited at RT regardless of annealing treatment. Improvement of grain size and stoichiometric ratio with annealing temperature can be attributed to the enhancement of UV emission, but the adsorbed oxygen species on the surface and grain boundary of films are thought to contribute the annihilation of UV emission. It seems that annealing at lower temperature in air is an effective method to improve the UV emission for thin films deposited on glass substrate at substrate temperature above RT.
Resumo:
Bright organic electroluminescent devices are developed using a metal-doped organic layer intervening between the cathode and the emitting layer. The typical device structure is a glass substrate/indium-tin oxide (ITO)/copper phthalocyanine (CuPc)/NN'-bis-(1-naphthl)-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)/Tris(8-quinolinolato) aluminum(Alq(3))/Mg-doped CuPc/Ag. At a driving voltage of 11 V, the device with a layer of Mg-doped CuPc (1:2 in weight) shows a brightness of 4312 cd/m(2) and a current efficiency of 2.52 cd/A, while the reference device exhibits 514 cd/m(2) and 1.25 cd/A.
Resumo:
Microcrystalline silicon thin films at different growth stages were prepared by hot wire chemical vapor deposition. Atomic force microscopy has been applied to investigate the evolution of surface topography of these films. According to the fractal analysis I it was found that, the growth of Si film deposited on glass substrate is the zero-diffused stochastic deposition; while for the film on Si substrate, it is the finite diffused deposition on the initial growth stage, and transforms to the zero-diffused stochastic deposition when the film thickness reaches a certain value. The film thickness dependence of island density shows that a maximum of island density appears at the critical film thickness for both substrates. The data of Raman spectra approve that, on the glass substrate, the a-Si: H/mu c-Si:H transition is related to the critical film thickness. Different substrate materials directly affect the surface diffusion ability of radicals, resulting in the difference of growth modes on the earlier growth stage.
Resumo:
Undoped hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared at low temperature by hot wire chemical vapor deposition (HWCVD). Microstructures of the mu c-Si:H films with different H-2/SiH4 ratios and deposition pressures have been characterized by infrared spectroscopy X-ray diffraction (XRD), Raman scattering, Fourier transform (FTIR), cross-sectional transmission electron microscopy (TEM) and small angle X-ray scattering (SAX). The crystallization of silicon thin film was enhanced by hydrogen dilution and deposition pressure. The TEM result shows the columnar growth of mu c-Si:H thin films. An initial microcrystalline Si layer on the glass substrate, instead of the amorphous layer commonly observed in plasma enhanced chemical vapor deposition (PECVD), was observed from TEM and backside incident Raman spectra. The SAXS data indicate an enhancement of the mass density of mu c-Si:H films by hydrogen dilution. Finally, combining the FTIR data with the SAXS experiment suggests that the Si--H bonds in mu c-Si:H and in polycrystalline Si thin films are located at the grain boundaries. (C) 2000 Elsevier Science S.A. All rights reserved.