997 resultados para Foraminifera, Fossil.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (omega) on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing) and Ammonia tepida (low-Mg calcite, symbiont-barren) were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite)/(TE/Caseawater). The culturing study shows that DMg of A. tepida significantly decreases with increasing omega at a gradient of -4.3x10-5 per omega unit. The DSr value of A. tepida does not change with omega, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing omega, while DSr increases considerably with omega at a gradient of 0.009 per omega unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50-100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep-sea benthic foraminifera typically used for paleostudies, the higher Ca concentrations in the past may potentially bias temperature reconstructions to a considerable degree. For instance, 25 Myr ago Mg/Ca ratios in A. tepida would have been 0.2 mmol/mol lower than today, due to the 1.5 times higher [Ca2+] of seawater, which in turn would lead to a temperature underestimation of more than 2 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El final del Serravalliense y principio del Tortoniense es un periodo de fuerte actividad tectónica en la Cordillera Bética. Además, existe un debate sobre la existencia de sedimentos de edad Tortoniense inferior al no existir claras atribuciones fósiles en esa edad. Estos sedimentos se asignan a dicha edad por criterios indirectos, tanto estratigráficos como por la ausencia de contenido fósil más antiguo o más reciente. En este trabajo se describe la sección compuesta de Les Moreres-Albatera, que es probablemente una de las secciones más completas de edad Tortoniense en la bibliografía de la Cordillera Bética, pese a tener un importante hiato de cerca de 1 Millón de años ligado a un evento tectónico intra-Tortoniense. La sección presenta dos unidades litológicas calizas a la base (El Castellà) y al techo (Las Ventanas) y dos unidades intermedias margosas, la inferior, llamada Les Moreres, y la superior, Galería de los Suizos se encuentran separadas por el conglomerado de la Raya del Búho. Se han identificado las biozonas de nanofósiles calcáreos CN5b/NN7 a CN9a/NN11a (Okada & Bukry, 1980; Martini, 1971) y de foraminíferos planctónicos de MMi9 a MMi12a (Lourens et al., 2004). La biostratigrafía de los primeros ha permitido identificar un hiato que incluye la parte alta de las biozonas CN7/NN9 hasta la parte baja de CN9a/NN11a (Okada & Bukry, 1980; Martini, 1971). La integración de los datos biostratigráficos con los paleomagnéticos en la sección Albatera permite la calibración del límite de los magnetocrones C4r.1r/C4n.2n.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthonic foraminifera in late Pleistocene deep-sea cores show significant variation in delta 13C with depth in sediment. This, and the report by Sommer et al., (in prep) of delta 13C variations in planktonic foraminifera, indicate that the delta13C in dissolved oceanic CO2 undergoes a significant change in a few thousand years. This is in apparent contradiction to the estimated 300 ka residence time for carbon in the ocean. It is suggested that this is a consequence of changes in the terrestrial plant biomass, which has a delta13C of about -25?. Postulated changes in world vegetation, particularly in tropical rainforests during the Late Pleistocene, were sufficient to produce change of the magnitude observed. Rapid expansions of forests between 13 ka and 8 ka ago may have resulted in the striking accumulation of aragonite pteropods in Atlantic Ocean sediments of the age. Rapid deforestation during an interglacial-glacial transition probably caused the intense carbonate dissolution which is observed in Equatorial Pacific Ocean sediments deposited over this interbal. The current rate of injection of fossil fuel CO2 into the atmosphere is substantially greater than the rate at which it was added during post-interglacial aridification in the tropics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Panktonic foraminiferal tests of the spinose species Orbulina universa, of the non-spinose Globorotalia tumida-menardii complex, and of a mixed species assemblage (grain size fraction 200-400 µm) were isolated from Sierra Leone Rise core GIK13519-2 and analyzed for free, total, and bound (by difference) amino acids to study the isoleucine epimerization mechanism in fossil foraminiferal tests and to define empirical calibration curves for dating deep-sea sediments over the past 900,000 years. Total isoleucine epimerization curves typically separate into three "linear" segments of decreasing apparents rates with increasing time and exhibit a pronounced "species effect". The degree of epimerization attained at time is considerably lower in O. universa than in G. tumida-menardii while the mixed species results scatter between the limits delineated by the two monospecific curves. Total allo/iso ratios are closely related to the proportion of free to total isoleucine accumulating in the tests indicating that the rate of hydrolysis of matrix proteins and peptides controls the overall epimerization reaction. The results are consistent with experimental evidenve where upon isoleucine epimerizes at a rapid rate in terminal positions but at slow rates in interior positions as well as in the free state. Notwithstanding free isoleucine exhibits the highest degree of epimerized terminal isoleucine. Species-specific hydrolysis and epimerization rates are maintained until about 50 % of bound isoleucine have been hydrolyzed to the free state corresponding to a total allo/iso ratio of about 0.5. Remaining peptide units appear to be more resistent against hydrolysis and separate species then show the same apparent epimerization rate dominantly controlled by the slow conversion rate in the free state until equilibrium is achieved in Miocene samples under deep-ocean temperature conditions. The degree of epimerization attained at comparable time in separate species will, however, remain different due to different initial rates of hydrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seventeen surface sediment samples from the North Atlantic Ocean off NE-Greenland between 76° and 81°N, and nine samples from the South Atlantic Ocean close to Bouvet Island between 48° and 55°S were taken with the aid of a Multiple Corer and investigated for their live (Rose Bengal stained) benthic foraminiferal content within the upper 15 cm of sediment. Preferentially endobenthic Melonis barleeanum, Melonis zaandami, and Bulimina aculeata as well as preferentially epibenthic Lobatula lobatula were counted from 1-cm-thick sediment slices each and analyzed for stable carbon and oxygen isotopic compositions of their calcareous tests. Live and dead specimens were counted and measured separately. The carbon isotopic composition of the foraminifera was compared to that of the dissolved inorganic carbon (DIC) of simultaneously sampled bottom water. During a period of one month, one station off NE-Greenland was replicately sampled once every week and samples were processed as above. Live specimens of Lobatula lobatula are confined to the uppermost two centimeters of sediment. Live specimens of Melonis spp. are found down to 8 cm within the sediment but with a distinct sub-surface maximum between 2 and 5 cm. The down-core distribution of live Bulimina aculeata shows a distinct surface maximum in the top centimeter and constant but low numbers down to 11-cm subbottom depth. The average stable carbon isotopic composition (d13C versus per mil PDB) of live Lobatula lobatula off NE-Greenland is by 0.4±0.1 per mil higher than the d13CDIC of the ambient bottom water at the time of sampling. There is evidence that this species calcify before the ice-free season, when bottom water d13CDIC is supposed to be higher. This would reconfirm the one-to-one relationship between d13C of ambient water DIC and cibicids, widely used by paleoceanographers. Live Melonis barleeanum show a negative offset from bottom water DIC of -1.7±0.6 per mil in the uppermost sediment and of -2.2±0.5 per mil in 3-4-cm subbottom depth. All d13C values of live Melonis spp. decrease within the upper four centimeters, regardless of the time of sampling and site investigated. The offset of live Bulimina aculeata from bottom water d13CDIC values of 8 stations rather constantly amounts to -0.6±0.1 per mil, no matter what subbottom depth the specimens are from. At one station however, where is strong indication of elevated organic carbon flux, the negative offset averaged over all sub-bottom depths increases to -1.5±0.2 per mil. Buliminids actively move within the sediment and by this either record an average isotope signal of the pore water or the signal of one specific calcification depth. The recorded signal, however, depends on the organic carbon flux and reflects general but site-specific pore water d13CDIC values. If compared with epibenthic d13C values from the same site, not influenced by pore water and related phytodetritus layer effects, Buliminad13C values bear some potential as a paleoproductivity proxy. Specimens of Melonis spp. seem to prefer a more static way of life and calcify at different but individually fix depths within the sediment. Although live specimens thus record a stratified pore water d13C signal, there is no means yet to correct for bioturbational and early diagenetic effects in fossil faunas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four long sediment cores from locations in the Framstrait, the Norwegian-Greenland Seas and the northern North Atlantic were analysed in a high resolution sampling mode (1 - 2 cm density) for their benthic foraminiferal content. In particular the impact of the intense climatic changes at glacial/interglacial transitions (terminations I and II) on the benthic community have been of special interest. The faunal data were investigated by means of multivariate analysis and represented in their chronological occurence. The most prominent species of benthic foraminifera in the Norwegian-Greenland Seas are Oridorsalis umbonatus, Cibicidoides wuellerstorfi, the group of Cassidulina, Pyrgo rotalaria, Globocassidulina subglobosa and fragmented tubes of arenaceous species. The climatic signal of termination I as well as termination II is recorded in the fossil foraminiferal tests as divided transition from glacial to interglacial. The elder INDAR maximum (individuals accumulation rate = individuals/sq cm * 1.000 y; Norwegian-Greenland Seas: average 3.000 - 6.000 individuals/sq cm * 1.000 y; northern North Atlantic: average 150 individuals/sq cm * 1.000 y) is followed by a period of decreased values. The second, younger maximum reaches comparable values as the elder maximum. The interglacial INDAR are in average 700 individuals/sq cm * 1.000 y in the Norwegian-Greenland Seas and 200 individuals/sq cm * 1.000 y in average in the northern North Atlantic. The occurence of the elder INDAR maximum shows a distinct chronological transgressivity between the northern North Atlantic (12.400 ybp.) and the Framstrait (8.900 ybp.). The time shift from south to north amounts 3.500 yrs., the average expanding velocity 0,78 km per year. Within the Norwegian-Greenland Seas the average expanding velocity amounts 0,48 km per year. This chronological transgressivity is interpreted as impact of the progressive expanding of the North Atlantic and the Norwegian Current during the deglaciation. The dynamic of the faunal development is defined as increasing INDAR per time. The elder INDAR maximum shows in both glacial/interglacial transitions an exponential increase from south to north. Termination II is characterized by a general higher dynamic as termination I. By means of the high resolution sampling density the impact of regional isotopic recognized melt-water events is recognized by an increase of endobenthic and t-ubiquitous species in the Norwegian-Greenland Seas sediments. During termination I the relative minimum between both INDAR maxima occur chronological with an decrease of calculated sea surface temperatures. This is interpreted as indication of the close pelagic - benthic coupling. The climatic signal in the northern North Atlantic recorded in the fossil benthic foraminiferal community shows a lower amplitude as in the Norwegian-Greenland Seas. The occurence of the epibenthic Cibicidoides wuellersforfi allows to evaluate the variability of the bottom water mass. In general at all core locations increasing lateral bottom currents are recognized with the occurence of the second younger INDAR maximum. In comparison with various paleo-climatological data sets fossil benthic foraminifers show a distinct koherence with changes of the atmospheric temperatures, the SSTs and the postglacial sea level increase. The benthic foraminiferal fauna is bound indirectly on and indicative for regional climatic changes, but principal dependent upon global climatic changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During "Meteor"cruise 1965 the author collected 134 samples of surface sediments from the Iranian part of the Persian Gulf. Benthic Foraminifera populations have been analysed for determining their depth zonation. These data are supposed to allow detailed depth interpretation of Pleistocene sediments found in cores. In addition, the ecological information might be usefull to reconstruct the depositional environment of fossil sediments in similar shallow epicontinental seas. The investigation is published in two parts: the present part 1 contains the catalogue of species with short discussions of taxonomic problems, notes on the distribution within the Persian Gulf and 11 plates, partly with scanning electron micrographs. The results of the statistical analysis are given in data tables which include number of species, percentages of 2 (and 5) ranked species, standing crop and foraminiferal numbers. The author used "species groups" to avoid ambiguities with species requiring additional taxonomic studies. However, species numbers within these units are estimated to yield applicable diversity information. - A total of 52 species and 7 "species groups" were separated, 2 new species were described.