960 resultados para Fonction oscillation
Resumo:
Rabi oscillation of the thin bulk semiconductor GaAs, which takes into account the effect of the local-field correction induced by the interacting excitons, is investigated by numerically solving the semiconductor Bloch equations. It is found, for a 2 pi few-cycle pulse excitation, that two incomplete Rabi-floppings emerge due to the competition between the Rabi frequency of the incident pulse and the internal-field matrices. Furthermore, for a sub-cycle 2 pi pulse excitation a complete Rabi-flopping can occur because of the absolute phase effect. We ascribe these characteristics of the Rabi oscillation to the renormalized Rabi frequency.
Resumo:
In laser-target interaction, the effects of laser intensity on plasma oscillation at the front surface of targets have been investigated by one-dimensional particle in cell simulations. The periodical oscillations of the ion density and electrostatic field at the front surface of the targets are reported for the first time, which is considered as an intrinsic property of the target excited by the laser. The oscillation period depends only on initial plasma density and is irrelevant with laser intensity. Flattop structures with curves in ion phase space are found with a more intense laser pulse due to the larger amplitude variation of the electrostatic field. A simple but valid model is proposed to interpret the curves.
Resumo:
The characteristics of harmonic radiation due to electron oscillation driven by an intense femtosecond laser pulse are analyzed considering a single electron model. An interesting modulated structure of the spectrum is observed and analyzed for different polarization. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width broadening of the high harmonic radiations can be limited. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Madden-Julian Oscillation (MJO) is a pattern of intense rainfall and associated planetary-scale circulations in the tropical atmosphere, with a recurrence interval of 30-90 days. Although the MJO was first discovered 40 years ago, it is still a challenge to simulate the MJO in general circulation models (GCMs), and even with simple models it is difficult to agree on the basic mechanisms. This deficiency is mainly due to our poor understanding of moist convection—deep cumulus clouds and thunderstorms, which occur at scales that are smaller than the resolution elements of the GCMs. Moist convection is the most important mechanism for transporting energy from the ocean to the atmosphere. Success in simulating the MJO will improve our understanding of moist convection and thereby improve weather and climate forecasting.
We address this fundamental subject by analyzing observational datasets, constructing a hierarchy of numerical models, and developing theories. Parameters of the models are taken from observation, and the simulated MJO fits the data without further adjustments. The major findings include: 1) the MJO may be an ensemble of convection events linked together by small-scale high-frequency inertia-gravity waves; 2) the eastward propagation of the MJO is determined by the difference between the eastward and westward phase speeds of the waves; 3) the planetary scale of the MJO is the length over which temperature anomalies can be effectively smoothed by gravity waves; 4) the strength of the MJO increases with the typical strength of convection, which increases in a warming climate; 5) the horizontal scale of the MJO increases with the spatial frequency of convection; and 6) triggered convection, where potential energy accumulates until a threshold is reached, is important in simulating the MJO. Our findings challenge previous paradigms, which consider the MJO as a large-scale mode, and point to ways for improving the climate models.
Resumo:
A locally integrable function is said to be of vanishing mean oscillation (VMO) if its mean oscillation over cubes in Rd converges to zero with the volume of the cubes. We establish necessary and sufficient conditions for a locally integrable function defined on a bounded measurable set of positive measure to be the restriction to that set of a VMO function.
We consider the similar extension problem pertaining to BMO(ρ) functions; that is, those VMO functions whose mean oscillation over any cube is O(ρ(l(Q))) where l(Q) is the length of Q and ρ is a positive, non-decreasing function with ρ(0+) = 0.
We apply these results to obtain sufficient conditions for a Blaschke sequence to be the zeros of an analytic BMO(ρ) function on the unit disc.
Resumo:
Low-threshold and highly efficient continuous-wave laser performance of Yb:Y3Al5O12 (Yb:YAG) single crystal grown by a temperature gradient technique (TGT) was achieved at room temperature. The laser can be operated at 1030 and 1049 nm by varying the transmission of the output coupler. Slope efficiencies of 57% and 68% at 1049 and 1030 nm, respectively, were achieved for 10 at. % Yb:YAG sample in continuous-wave laser-diode pumping. The effect of pump power on the laser emission spectrum of both wavelengths is addressed. The near-diffraction-limited beam quality for different laser cavities was achieved. The excellent laser performance indicates that TGT-grown Yb:YAG crystals have very good optical quality and can be potentially used in high-power solid-state lasers.
Resumo:
Fishery catch data on yellowfin tuna (Thunnus albacares) were examined to study the effects of El Niño events between 1990 and 1999 for an area in the northeastern tropical Pacific (18−24°N, 112−104°W). The data were extracted from a database of logbook records from the Mexican tuna purse-seine f leet. Latitudinal distribution of the catches increased from south to north for the 10-year period. Highest catches and effort were concentrated between 22°N and 23°N. This area accumulated 48% of the total catch over the 10year period. It was strongly correlated with El Niño-Southern Oscillation (ENSO) events. At least two periods of exceptionally high catches occurred following El Niño events in 1991 and 1997. Peaks of catches were triggered by the arrival of positive anomalies of sea surface temperature (SST) to the area. A delay of two to four months was observed between the occurrence of maximum SST anomalies at the equator and peaks of catch. Prior to these two events, negative SST anomalies were the dominant feature in the study area and catch was extremely low. This trend of negative SST anomalies with low catches followed by positive SST anomalies and high catches may be attributed to northward yellowfin tuna migration patterns driven by El Niño forcing, a result that contrasts with the known behavior of decreasing relative abundance of these tuna after El Niño events in the eastern Pacific. However, this decrease in relative abundance may be the result of a local or subregional effect.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Oceanographic, hydrologic, and climatic data collected during 1916-'87 in Puget Sound's Main Basin (~200 m x 5 km x 100 km) and approaches oscillate at low frequency between two regimes (I, II). The oscillation accounts for a large fraction of the interannual variability (41-75%) and the zero crossings between regimes span approximately a decade. ... The transition between regimes is accompanied by substantial changes in the horizontal pressure and density fields between the Pacific coast and the mixing zones leading to the Basin, as well as within the Basin itself.
Resumo:
The effects of El Niño–Southern Oscillation events on catches of Bigeye Tuna (Thunnus obesus) in the eastern Indian Ocean (EIO) off Java were evaluated through the use of remotely sensed environmental data (sea-surface-height anomaly [SSHA], sea-surface temperature [SST], and chlorophyll a concentration), and Bigeye Tuna catch data. Analyses were conducted for the period of 1997–2000, which included the 1997–98 El Niño and 1999–2000 La Niña events. The empirical orthogonal function (EOF) was applied to examine oceanographic parameters quantitatively. The relationship of those parameters to variations in catch distribution of Bigeye Tuna was explored with a generalized additive model (GAM). The mean hook rate was 0.67 during El Niño and 0.44 during La Niña, and catches were high where SSHA ranged from –21 to 5 cm, SST ranged from 24°C to 27.5°C, and chlorophyll-a concentrations ranged from 0.04 to 0.16 mg m–3. The EOF analysis confirmed that the 1997–98 El Niño affected oceanographic conditions in the EIO off Java. The GAM results indicated that SST was better than the other environmental factors (SSHA and chlorophyll-a concentration) as an oceanographic predictor of Bigeye Tuna catches in the region. According to the GAM predictions, the highest probabilities (70–80%) for Bigeye Tuna catch in 1997–2000 occurred during oceanographic conditions during the 1997–98 El Niño event.
Resumo:
The extreme phases of the Southern Oscillation (SO) have been linked to fairly persistent classes of circulation anomalies over the North Pacific and parts of North America. It has been more difficult to uncover correspondingly consistent patterns of surface temperature and precipitation over much of the continent. The few regions that appear to have consistent SO-related patterns of temperature and precipitation anomalies are identified and discussed. Also discussed are regions that appear to have strong SO-related surface anomalies whose sign varies from episode to episode.
Resumo:
Fire statistics (area burned) and fire-scar chronologies from tree rings show reduced fire activity during El Niño-Southern Oscillation (ENSO) in forests of Arizona and New Mexico. This relationship probably stems from increased fuel moisture after a wet winter and spring, but also could involve climatic controls on lightning activity at the onset of the monsoon season.