929 resultados para Feature selection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este artículo se investigan técnicas automáticas para encontrar un modelo óptimo de características en el caso de un analizador de dependencias basado en transiciones. Mostramos un estudio comparativo entre algoritmos de búsqueda, sistemas de validación y reglas de decisión demostrando al mismo tiempo que usando nuestros métodos es posible conseguir modelos complejos que proporcionan mejores resultados que los modelos que siguen configuraciones por defecto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature selection is an important and active issue in clustering and classification problems. By choosing an adequate feature subset, a dataset dimensionality reduction is allowed, thus contributing to decreasing the classification computational complexity, and to improving the classifier performance by avoiding redundant or irrelevant features. Although feature selection can be formally defined as an optimisation problem with only one objective, that is, the classification accuracy obtained by using the selected feature subset, in recent years, some multi-objective approaches to this problem have been proposed. These either select features that not only improve the classification accuracy, but also the generalisation capability in case of supervised classifiers, or counterbalance the bias toward lower or higher numbers of features that present some methods used to validate the clustering/classification in case of unsupervised classifiers. The main contribution of this paper is a multi-objective approach for feature selection and its application to an unsupervised clustering procedure based on Growing Hierarchical Self-Organising Maps (GHSOMs) that includes a new method for unit labelling and efficient determination of the winning unit. In the network anomaly detection problem here considered, this multi-objective approach makes it possible not only to differentiate between normal and anomalous traffic but also among different anomalies. The efficiency of our proposals has been evaluated by using the well-known DARPA/NSL-KDD datasets that contain extracted features and labelled attacks from around 2 million connections. The selected feature sets computed in our experiments provide detection rates up to 99.8% with normal traffic and up to 99.6% with anomalous traffic, as well as accuracy values up to 99.12%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A practical Bayesian approach for inference in neural network models has been available for ten years, and yet it is not used frequently in medical applications. In this chapter we show how both regularisation and feature selection can bring significant benefits in diagnostic tasks through two case studies: heart arrhythmia classification based on ECG data and the prognosis of lupus. In the first of these, the number of variables was reduced by two thirds without significantly affecting performance, while in the second, only the Bayesian models had an acceptable accuracy. In both tasks, neural networks outperformed other pattern recognition approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data visualization algorithms and feature selection techniques are both widely used in bioinformatics but as distinct analytical approaches. Until now there has been no method of measuring feature saliency while training a data visualization model. We derive a generative topographic mapping (GTM) based data visualization approach which estimates feature saliency simultaneously with the training of the visualization model. The approach not only provides a better projection by modeling irrelevant features with a separate noise model but also gives feature saliency values which help the user to assess the significance of each feature. We compare the quality of projection obtained using the new approach with the projections from traditional GTM and self-organizing maps (SOM) algorithms. The results obtained on a synthetic and a real-life chemoinformatics dataset demonstrate that the proposed approach successfully identifies feature significance and provides coherent (compact) projections. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Publisher PDF

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fitting statistical models is computationally challenging when the sample size or the dimension of the dataset is huge. An attractive approach for down-scaling the problem size is to first partition the dataset into subsets and then fit using distributed algorithms. The dataset can be partitioned either horizontally (in the sample space) or vertically (in the feature space), and the challenge arise in defining an algorithm with low communication, theoretical guarantees and excellent practical performance in general settings. For sample space partitioning, I propose a MEdian Selection Subset AGgregation Estimator ({\em message}) algorithm for solving these issues. The algorithm applies feature selection in parallel for each subset using regularized regression or Bayesian variable selection method, calculates the `median' feature inclusion index, estimates coefficients for the selected features in parallel for each subset, and then averages these estimates. The algorithm is simple, involves very minimal communication, scales efficiently in sample size, and has theoretical guarantees. I provide extensive experiments to show excellent performance in feature selection, estimation, prediction, and computation time relative to usual competitors.

While sample space partitioning is useful in handling datasets with large sample size, feature space partitioning is more effective when the data dimension is high. Existing methods for partitioning features, however, are either vulnerable to high correlations or inefficient in reducing the model dimension. In the thesis, I propose a new embarrassingly parallel framework named {\em DECO} for distributed variable selection and parameter estimation. In {\em DECO}, variables are first partitioned and allocated to m distributed workers. The decorrelated subset data within each worker are then fitted via any algorithm designed for high-dimensional problems. We show that by incorporating the decorrelation step, DECO can achieve consistent variable selection and parameter estimation on each subset with (almost) no assumptions. In addition, the convergence rate is nearly minimax optimal for both sparse and weakly sparse models and does NOT depend on the partition number m. Extensive numerical experiments are provided to illustrate the performance of the new framework.

For datasets with both large sample sizes and high dimensionality, I propose a new "divided-and-conquer" framework {\em DEME} (DECO-message) by leveraging both the {\em DECO} and the {\em message} algorithm. The new framework first partitions the dataset in the sample space into row cubes using {\em message} and then partition the feature space of the cubes using {\em DECO}. This procedure is equivalent to partitioning the original data matrix into multiple small blocks, each with a feasible size that can be stored and fitted in a computer in parallel. The results are then synthezied via the {\em DECO} and {\em message} algorithm in a reverse order to produce the final output. The whole framework is extremely scalable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To maintain the pace of development set by Moore's law, production processes in semiconductor manufacturing are becoming more and more complex. The development of efficient and interpretable anomaly detection systems is fundamental to keeping production costs low. As the dimension of process monitoring data can become extremely high anomaly detection systems are impacted by the curse of dimensionality, hence dimensionality reduction plays an important role. Classical dimensionality reduction approaches, such as Principal Component Analysis, generally involve transformations that seek to maximize the explained variance. In datasets with several clusters of correlated variables the contributions of isolated variables to explained variance may be insignificant, with the result that they may not be included in the reduced data representation. It is then not possible to detect an anomaly if it is only reflected in such isolated variables. In this paper we present a new dimensionality reduction technique that takes account of such isolated variables and demonstrate how it can be used to build an interpretable and robust anomaly detection system for Optical Emission Spectroscopy data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many learning problems require handling high dimensional datasets with a relatively small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. Examples of these types of data include the bag-of-words representation in text classification problems and gene expression data for tumor detection/classification. Usually, among the high number of features characterizing the instances, many may be irrelevant (or even detrimental) for the learning tasks. It is thus clear that there is a need for adequate techniques for feature representation, reduction, and selection, to improve both the classification accuracy and the memory requirements. In this paper, we propose combined unsupervised feature discretization and feature selection techniques, suitable for medium and high-dimensional datasets. The experimental results on several standard datasets, with both sparse and dense features, show the efficiency of the proposed techniques as well as improvements over previous related techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present a feature selection approach based on Gabor wavelet feature and boosting for face verification. By convolution with a group of Gabor wavelets, the original images are transformed into vectors of Gabor wavelet features. Then for individual person, a small set of significant features are selected by the boosting algorithm from a large set of Gabor wavelet features. The experiment results have shown that the approach successfully selects meaningful and explainable features for face verification. The experiments also suggest that for the common characteristics such as eyes, noses, mouths may not be as important as some unique characteristic when training set is small. When training set is large, the unique characteristics and the common characteristics are both important.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Discrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work investigates the problem of feature selection in neuroimaging features from structural MRI brain images for the classification of subjects as healthy controls, suffering from Mild Cognitive Impairment or Alzheimer’s Disease. A Genetic Algorithm wrapper method for feature selection is adopted in conjunction with a Support Vector Machine classifier. In very large feature sets, feature selection is found to be redundant as the accuracy is often worsened when compared to an Support Vector Machine with no feature selection. However, when just the hippocampal subfields are used, feature selection shows a significant improvement of the classification accuracy. Three-class Support Vector Machines and two-class Support Vector Machines combined with weighted voting are also compared with the former and found more useful. The highest accuracy achieved at classifying the test data was 65.5% using a genetic algorithm for feature selection with a three-class Support Vector Machine classifier.