950 resultados para FeÌlibrige.
Resumo:
Experimental and thermodynamic modeling studies have been carried out on the Zn-Fe-Si-O system. This research is part of a wider program to characterize zinc/lead industrial slags and sinters in the PbO-ZnO-SiO2-CaO-FeO-Fe2O3 system. Experimental investigations involve high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA). Liquidus temperatures and solid solubilities of the crystalline phases were measured in the temperature range from 1200 °C to 1450 °C (1473 to 1723 K) in the zinc ferrite, zincite, willemite, and tridymite primary-phase fields in the Zn-Fe-Si-O system in air. These equilibrium data for the Zn-Fe-Si-O system in air, combined with previously reported data for this system, were used to obtain an optimized self-consistent set of parameters of thermodynamic models for all phases.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. The literature indicated that Cu rich Cu-Cr and Cu-Fe alloys have been thoroughly investigated. A number of commercial alloys have been developed and these are used for a variety of applications requiring combinations of high-strength, high-conductivity and resistance to softening. Little evidence was found in the literature that the Cu rich corner of the Cu-Fe-Cr system had previously been investigated for the purpose of developing high-strength, high-conductivity copper alloys resistant to softening. The aim of these present investigations was to explore the possibility that new alloys could be developed that combined the properties of both sets of alloys, ie large precipitation hardening response combined with the ability to stabilise cold worked microstructures to high temperatures while at the same maintain high electrical conductivity. To assess the feasibility of this goal the following alloys were chosen for investigation: Cu-0.7wt%Cr-0.3wt%Fe, Cu-0.7wt%Cr-0.8wt%Fe, Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the mechanical property investigation which indicated that the Cu-0.7wt%Cr-0.3wt%Fe, and Cu-0.7wt%Cr-2.0wt%Fe alloys were worthy of further investigation. (C) 2001 Kluwer Academic Publishers.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. Promising properties have been measured for the following alloys: Cu-0.7wt%Cr-0.3wt%Fe and Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the microstructural characterisation of these alloys and discusses the mechanical and electrical properties of these alloys in terms of their microstructure, particularly the formation of precipitates. These alloys have evinced properties that warrant further investigation. Cost modelling has shown that Cu-0.7wt%Cr-0.3wt%Fe is approximately 25% cheaper to produce than commercial Cu-1%Cr. It has also been shown to be more cost efficient on a yield stress and % IACS per dollar basis. The reason for the cost saving is that the Cu-0.7%Cr-0.3%Fe alloy can be made with low carbon ferro-chrome additions as the source of chromium rather than the more expensive Cu-Cr master-alloy. For applications in which cost is one of the primary materials selection criteria, it is envisaged that there would be numerous applications in both cast and wrought form, where the Cu-0.7%Cr-0.3%Fe alloy would be more suitable than Cu-1%Cr. (C) 2001 Kluwer Academic Publishers.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. The aim of the present work was to increase the electrical conductivity and strength of the Cu-0.7wt%Cr-0.3wt%Fe alloy through selective minor additions (less than or equal to0.15 wt%) of elements expected to promote precipitation of dissolved Fe: Ti, B, P, Ni & Y. Such quaternary alloys with reduced Fe in solid solution would be expected to have properties equivalent to or better than those of the Cu-1%Cr reference alloy (Alloy Z). The investigation showed that none of the trace element additions significantly improved the size of the age hardening response or the peak aged electrical conductivity of Alloy A, although further work is required on the influence of Ti. Additions of P and B were detrimental. Other trace additions had little or no effect apart from causing some slight changes to the precipitation kinetics. The mechanical properties of the Cu-0.7%Cr-0.3%Fe alloy made with less expensive high carbon ferrochrome were found to be inferior to those of the equivalent alloy made with low carbon ferrochrome. (C) 2001 Kluwer Academic Publishers.
Resumo:
The aim of this project was to investigate the properties of copper rich Cu-Fe-Cr alloys for the purpose of developing a new cost effective, high-strength, high-conductivity copper alloy. This paper reports on the influence of cold work. The age hardening response of the Cu-0.7%Cr-2.0%Fe alloy was minimal, but the resistance to softening was superior to that reported for any commercial high-strength, high-conductivity (HSHC) copper alloy with comparable mechanical and electrical properties. For example, an excess of 85% of the original hardness of the 40% cold worked alloy is retained after holding at 700 degreesC for 1 hour, whereas commercial HSHC Cu-Fe-P alloys have been reported to soften significantly after 1 hours exposure at less than 500 degreesC. The Cu-0.7Cr-2.0Fe alloy would therefore be expected to be more suitable for applications with a significant risk of exposure to elevated temperatures. Optical microscope examination of cold worked and aged microstructures confirmed the high resistance to recrystallization for Cu-0.7%Cr-2.0%Fe. The Zener-Smith drag term, predicting the pinning effect of second phase particles on dislocations in cold worked microstructures, was calculated using the precipitate characteristics obtained from TEM, WDS and resistivity measurements. The pinning effect of the precipitate dispersions in the peak-aged condition was determined to be essentially equivalent for the Cu-0.7%Cr-0.3%Fe and Cu-0.7%Cr-2.0%Fe alloys. A lower recrystallisation temperature in the Cu-0.7%Cr-0.3%Fe alloy was therefore attributed to faster coarsening kinetics of the secondary precipitates resulting from a higher Cr concentration in the precipitates at lower iron content. (C) 2001 Kluwer Academic Publishers.
Resumo:
The iron(II) complex [Fe(AMN(3)S(3)sarH)](ClO4)(3).3H(2)O (AMN(3)S(3)sarH = 8-ammonio-1-methyl-3,13,16-trithia-6,10,19-triazabicyclo[6.6.6]icosane) has been synthesized and characterized by single crystal structure and spectroscopic methods. The Fe(II)-S(thiaether) bond lengths are short, indicative of a large degree of metal-ligand orbital mixing (pi-acceptor character) of the thiaether ligand. The complex is stable to metal centred oxidation. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The outer-sphere redox behaviour of a series of [LnCoIII-NCFeII(CN)(5)](-) (L-n = n-membered pentadentate aza-macrocycle) complexes have been studied as a function of pH and oxidising agent. All the dinuclear complexes show a double protonation process at pH approximate to 2 that produces a shift in their UV/Vis spectra. Oxidation of the different non-protonated and diprotonated complexes has been carried out with peroxodisulfate, and of the non-protonated complexes also with trisoxalatocobaltate(III). The results are in agreement with predictions from the Marcus theory. The oxidation of [Fe(phen)(3)](3+) and [IrCl6](2-) is too fast to be measured, although for the latter the transient observation of the process has been achieved at pH = 0. The study of the kinetics of the outer-sphere redox process, with the S2O82- and [Co(ox)(3)](3-) oxidants, has been carried out as a function of pH, temperature, and pressure. As a whole, the values found for the activation volumes, entropies, and enthalpies are in the following margins, for the diprotonated and non-protonated dinuclear complexes, respectively: DeltaV(not equal) from 11 to 13 and 15 to 20 cm(3) mol(-1); DeltaS(not equal) from 110 to 30 and -60 to -90 J K-1 mol(-1); DeltaH(not equal) from 115 to 80 and 50 to 65 kJ.mol(-1). The thermal activation parameters are clearly dominated by the electrostriction occurring on outer-sphere precursor formation, while the trends found for the values of the volume of activation indicate an important degree of tuning due to the charge distribution during the electron transfer process. The special arrangement on the amine ligands in the isomer trans[(L14CoNCFeII)-N-III(CN)(5)](-) accounts for important differences in solvent-assisted hydrogen bonding occurring within the outer-sphere redox process, as has been established in redox reactions of similar compounds. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
FeBr2 reacts with the S2C2(CN)22- ion (1:1 ratio) in the presence of an excess of t-BuNC in THF to give the mixed ligand [Fe(S2C2(CN)2)(t-BuNC) 4] compound. This neutral product with a formal oxidation state of two for the iron atom was characterized by conductivity measurements, and, i.r., Mössbauer, 13C and 1H n.m.r. spectroscopy. There is a Fe-C p back-donation strengthened towards isocyanide ligands, according to the data of 13C, 1H n.m.r. and Mössbauer spectroscopy.
Resumo:
The binuclear [Fe(CNBut)(CO)4(HgSO4 )] adduct was obtained in the reaction of HgSO4 with [Fe(CNBut)(CO)4] in methanol. This adduct, without a similar in the homoleptic pentacarbonyliron, was characterized by analytical and spectroscopic data. Further Mössbauer and molar conductivity studies have confirmed it's adduct nature.
Resumo:
O descarte ou reutilização da água produzida da indústria do petróleo é difícil por causa dos impactos ambientais causados devido à presença de alta salinidade e componentes tóxicos, ou pelo risco de obstrução nas colunas de produção devido à formação de incrustações que causam redução na produção de petróleo e enormes perdas no processo de extração. Assim, o conhecimento da composição química da água produzida é muito importante. O método proposto por este trabalho visa a determinação de elementos traço (Co, Cr, Fe, Mn, Ni, Se e V) em amostras de água produzida de petróleo por espectrometria de emissão óptica com plasma indutivamente acoplado (ICP OES) utilizando a digestão ácida assistida por micro-ondas para o preparo das amostras (15 g de amostra e 2 mL de HNO3 concentrado). A curva analítica construída em HNO3 2% v v-1 foi adotada para o método após verificar que não é necessário o uso de salinidade para equiparação de matriz. Para o elemento Ni, não há necessidade do uso de padrão interno, para os elementos Co, Cr, Fe, Mn e V os melhores resultados foram obtidos usando Sc como padrão interno. Para o elemento Se é recomendado o uso de Y como padrão interno. Os limites de detecção obtidos foram Co 0,67, Cr 1,2, Fe 2,3, Mn 0,49, Ni 1,9, Se 3,7 e V 5,5 μg L-1; e os limites de quantificação foram Co 2,2, Cr 4,0, Fe 7,7, Mn 1,6, Ni 6,5, Se 12,4 e V 18,3 μg L-1. A exatidão do procedimento foi verificada através de testes de recuperação em dois níveis de concentração (40 e 80 μg L-1) e análise dos materiais certificados de referência de água estuarina SLEW-2 e de água do mar NASS-5. Bons valores de recuperação foram obtidos e não houve diferença significativa (95% de confiança) entre os resultados obtidos e os valores certificados dos materiais de referência.
Resumo:
The new potentially N-4-multidentate pyridyl-functionalized scorpionates 4-((tris-2,2,2-(pyrazol-1-ypethoxy)methyl)pyridine (TpmPy, (1)) and 4-((tris-2,2,2-(3-phenylpyrazol-1-yl)ethoxy)methyl)pyridine (TpmPy(Ph), (2)) have been synthesized and their coordination behavior toward Fe-II, Ni-II, Zn-II, Cu-II, Pd-II, and V-III centers has been studied. Reaction of (1) with Fe(BF4)(2)center dot 6H(2)O yields [Fe(TpmPy)(2)](BF4)(2) (3), that, in the solid state, shows the sandwich structure with trihapto ligand coordination via the pyrazolyl arms, and is completely low spin (LS) until 400 K. Reactions of 2 equiv of (1) or (2) with Zn-II or Ni-II chlorides give the corresponding metal complexes with general formula [MCl2(TpmPy*)(2)] (M = Zn, Ni; TpmPy* = TpmPy, TpmPy(Ph)) (4-7) where the ligand is able to coordinate through either the pyrazolyl rings (in case of [Ni(TpmPy)(2)Cl-2 (5)) or the pyridyl-side (for [ZnCl2(TpmPy)(2)] (4), [ZnCl2(TpmPy(Ph))(2)] (6) and [NiCl2(TpmPy(Ph))(2)] (7)). The reaction of (1) with VCl3 gives [VOCl2(TpmPy)] (8) that shows the N-3-pyrazolyl coordination-mode. Moreover, (1) and react with cis-[PdCl2(CH3CN)(2)] to give the disubstituted complexes [PdCl2(TprnPy)(2)] (9) and [PdCl2(TpmPy(Ph))(2)] (10), respectively, bearing the scorpionate coordinated via the pyridyl group. Compounds (9) and (10) react with Fe(BF4)(2) to give the heterobimetallic Pd/Fe systems [PdCl2(mu-TpmPy)(2)-Fe](BF4)(2) (11) and [PdCl2(mu-TpmPy(Ph))(2)Fe-2(H2O)(6)]BF4)(4) (13), respectively. Compound (11) can also be formed from reaction of (3) with cis-[PdCl2(CH3CN)(2)], while reaction of (3) with Cu(NO3)(2).2.5H(2)O generates [Fe(mu-TpmPy)(2)-Cu(NO3)(2)](BF4)(2) (12), confirming the multidentate ability of the new chelating ligands. The X-ray diffraction analyses of compounds (1), (3), (4), (5), and (9) are also reported.
Resumo:
The effects of dyke intrusion on the magnetic properties of host sedimentary rocks are still poorly understood. Therefore, we have evaluated bulk magnetic parameters of standard palaeomagnetic samples collected along several sections across the sediments hosting the Foum Zguid dyke in southern Morocco. The study has been completed with the evaluation of the magnetic fabric after laboratory application of sequential heating experiments. The present study shows that: (1) close to Fourn Zguid dykes, the variations of the bulk magnetic parameters and of the magnetic fabric is strongly related with re-crystallization and Fe-metasomatism intensity. (2) The thermal experiments on AMS of samples collected farther from the dyke and, thus, less affected by heating during dyke emplacement, indicate that 300-400 degrees C is the minimum experimental temperature necessary to trigger appreciable transformations of the pre-existing magnetic fabrics. For temperatures higher than ca. 580 degrees C, the magnetic fabric transformations are fully realized, with complete transposition of the initial fabric to a fabric similar to that of samples collected close to the dyke. Therefore, measured variations of the magnetic fabric can be used to evaluate re-crystallization temperatures experienced by the host sedimentary rock during dyke emplacement. The distinct magnetic behaviour observed along the cross-sections strongly suggests that samples collected farther from the dyke margins did not experience thermal episodes with temperatures higher than 300 degrees C after dyke emplacement. (3) AMS data shows a gradual variation of the magnetic fabric with distance from the dyke margin, from sub-horizontal K-3 away from the dyke to vertical K3 close to the dyke. Experimental heating shows that heat alone can be responsible for this strong variation. Therefore, such orientation changes should not be unequivocally interpreted as the result of a stress field (resulting from the emplacement of the dyke, for instance). (4) Magnetic studies prove to be a very sensitive tool to assess rock magnetic transformations, thermally and chemically induced by dyke intrusion in hosting sediments.