984 resultados para FUNCTIONAL MORPHOLOGY
Resumo:
The structure and function of the pharyngeal jaw apparatus (PJA) and postpharyngeal alimentary tract of Arrhamphus sclerolepis krefftii, an herbivorous hemiramphid, were investigated by dissection, light and scanning electron microscopy, and X-ray analysis of live specimens. A simple model of PJA operation is proposed, consisting of an adductive power stroke of the third pharyngobranchial that draws it posteriorly while the fifth ceratobranchial is adducted, and a return stroke in which the third pharyngobranchial bone is drawn anteriorly during abduction of the fifth ceratobranchial. Teeth in the posteromedial region of the PJA are eroded into an occlusion zone where the teeth of the third pharyngobranchial are spatulate incisiform and face posteriorly in opposition to the rostrally oriented spatulate incisiform teeth in the wear zone of the fifth ceratobranchial. The shape of the teeth and their pedestals (bone of attachment) is consistent with the model and with the forces likely to operate on the elements of the PJA during mastication. The role of pharyngeal tooth replacement in maintaining the occlusal surfaces in the PJA during growth is described. The postpharyngeal alimentary tract of A. sclerolepis krefftii comprises a stomachless cylinder that attenuates gradually as it passes straight to the anus, interrupted only by a rectal valve. The ratio of gut length to standard length is about 0.5. Despite superficial similarities to the cichlid PJA (Stiassny and Jensen [1987] Bull Mus Comp Zool 151: 269-319), the hemiramphid PJA differs in the fusion of the third pharyngobranchial bones, teeth in the second pharyngobranchials and the fifth ceratobranchial face anteriorly, the presence of a slide-like diarthroses between the heads of the fourth epibranchials and the third pharyngobranchial, the occlusion zone of constantly wearing teeth, and the unusual form of the muscularis craniopharyngobranchialis. The functional relationship between these structures is explained and the consequence for the fish of a complex PJA and a simple gut is discussed. (C) 2002 Wiley-Liss, Inc.
Resumo:
This article reports the use of simple beam and finite-element models to investigate the relationship between rostral shape and biomechanical performance in living crocodilians under a range of loading conditions. Load cases corresponded to simple biting, lateral head shaking, and twist feeding behaviors. The six specimens were chosen to reflect, as far as possible, the full range of rostral shape in living crocodilians: a juvenile Caiman crocodilus, subadult Alligator mississippiensis and Crocodylus johnstoni, and adult Caiman crocodilus, Melanosuchus niger, and Paleosuchus palpebrosus. The simple beam models were generated using morphometric landmarks from each specimen. Three of the finite-element models, the A. mississippiensis, juvenile Caiman crocodilus, and the Crocodylus johnstoni, were based on CT scan data from respective specimens, but these data were not available for the other models and so these-the adult Caiman crocodilus, M. niger, and P. palpebrosus-were generated by morphing the juvenile Caiman crocodilus mesh with reference to three-dimensional linear distance measured from specimens. Comparison of the mechanical performance of the six finite-element models essentially matched results of the simple beam models: relatively tall skulls performed best under vertical loading and tall and wide skulls performed best under torsional loading. The widely held assumption that the platyrostral (dorsoventrally flattened) crocodilian skull is optimized for torsional loading was not supported by either simple beam theory models or finite-element modeling. Rather than being purely optimized against loads encountered while subduing and processing food, the shape of the crocodilian rostrum may be significantly affected by the hydrodynamic constraints of catching agile aquatic prey. This observation has important implications for our understanding of biomechanics in crocodilians and other aquatic reptiles.
Resumo:
Several vertebrae of a sauropterygian specimen have been recovered in Fuencaliente de Medinaceli (Soria Province, Castilla y León, Spain). The remains come from Middle–Upper Triassic Muschelkalk Facies. This finding represents the first documented evidence of a Triassic tetrapod in Castilla y León. The vertebrae belong to Nothosaurus, a sauropterygian genus found in Europe, Middle East, North of Africa and China. This genus is poorly-known in the Iberian record. The new remains constitute the first evidence of the species Nothosaurus giganteus, or a related taxon, in the Iberian Peninsula. This study reveals the occurrence of at least two species of the sauropterygian Nothosaurus in the Spanish record.
Resumo:
Morphological, anatomical and physiological plant and leaf traits of A. distorta, an endemic species of the Central Apennines on the Majella Massif, growing at 2,675 m a.s.l, were analyzed. The length of the phenological cycle starts immediately after the snowmelt at the end of May, lasting 128 ± 10 days. The low A. distorta height (Hmax= 64 ± 4 mm) and total leaf area (TLA= 38 ± 9 cm2) associated to a high leaf mass area (LMA =11.8±0.6 mg cm−2) and a relatively high leaf tissue density (LTD = 124.6±14.3 mg cm−3) seem to be adaptive traits to the stress factors of the environment where it grows. From a physiological point of view, the high A. distorta photosynthetic rates (PN =19.6 ± 2.3 µmol m−2 s−1) and total chlorophyll content (Chla+b = 0.88 ± 0.13 mg g−1) in July are justified by the favorable temperature. PN decreases by 87% in September at the beginning of plant senescence. Photosynthesis and leaf respiration (RD) variations allow A. distorta to maintain a positive carbon balance during the growing season becoming indicative of the efficiency of plant carbon use. The results could be an important tool for conservation programmes of the A. distorta wild populations.
Resumo:
In this study the conodont multielement apparatus of Late Devonian (Famennian) Icriodus altematus is described which has been reconstructed from clustered group findings and separated elements. This apparatus is markedly different from classical ozarkodinid apparatuses and needs further consideration of its functional morphology. Since bedding plane assemblages of Icriodus altematus are yet unknown, a spatial reconstruction of this apparatus and a feeding mechanism are proposed which are based on the oropharyngal apparatus of recent lampreys. Though the extant representatives of petromyzontoids are not close phylogenetic relatives of extinct conodonts, there exist intriguing analogies concerning the morphology of the tooth types and the presumed spatial distribution within the oral cavity of both taxa.
Resumo:
This dissertation investigates the acquisition of oblique relative clauses in L2 Spanish by English and Moroccan Arabic speakers in order to understand the role of previous linguistic knowledge and its interaction with Universal Grammar on the one hand, and the relationship between grammatical knowledge and its use in real-time, on the other hand. Three types of tasks were employed: an oral production task, an on-line self-paced grammaticality judgment task, and an on-line self-paced reading comprehension task. Results indicated that the acquisition of oblique relative clauses in Spanish is a problematic area for second language learners of intermediate proficiency in the language, regardless of their native language. In particular, this study has showed that, even when the learners’ native language shares the main properties of the L2, i.e., fronting of the obligatory preposition (Pied-Piping), there is still room for divergence, especially in production and timed grammatical intuitions. On the other hand, reaction time data have shown that L2 learners can and do converge at the level of sentence processing, showing exactly the same real-time effects for oblique relative clauses that native speakers had. Processing results demonstrated that native and non-native speakers alike are able to apply universal processing principles such as the Minimal Chain Principle (De Vincenzi, 1991) even when the L2 learners still have incomplete grammatical representations, a result that contradicts some of the predictions of the Shallow Structure Hypothesis (Clahsen & Felser, 2006). Results further suggest that the L2 processing and comprehension domains may be able to access some type of information that it is not yet available to other grammatical modules, probably because transfer of certain L1 properties occurs asymmetrically across linguistic domains. In addition, this study also explored the Null-Prep phenomenon in L2 Spanish, and proposed that Null-Prep is an interlanguage stage, fully available and accounted within UG, which intermediate L2 as well as first language learners go through in the development of pied-piping oblique relative clauses. It is hypothesized that this intermediate stage is the result of optionality of the obligatory preposition in the derivation, when it is not crucial for the meaning of the sentence, and when the DP is going to be in an A-bar position, so it can get default case. This optionality can be predicted by the Bottleneck Hypothesis (Slabakova, 2009c) if we consider that these prepositions are some sort of functional morphology. This study contributes to the field of SLA and L2 processing in various ways. First, it demonstrates that the grammatical representations may be dissociated from grammatical processing in the sense that L2 learners, unlike native speakers, can present unexpected asymmetries such as a convergent processing but divergent grammatical intuitions or production. This conclusion is only possible under the assumption of a modular language system. Finally, it contributes to the general debate of generative SLA since in argues for a fully UG-constrained interlanguage grammar.
Resumo:
The life history of a population of Lutraria lutraria in a depth of 7m at Hunterston, Ayrshire is discussed. Much of the present population Is thought to have settled in 1967. The functional morphology of Lutraria is described and related to its life as a large, deep-burrowing bivalve. Lutraria spawned in late spring and continued to do so through the summer in 1979 and 1980. Animals became spent in August and September. Unsuccessful attempts were made to induce spawning in the laboratory. Artificial fertilization was successful but development did not proceed beyond the ciliated gastrula stage. Larvae of Lutraria were not identified in plankton samples and young stages were not encountered in sieved sediment samples. The biochemical cycle of the total animal and five component parts (gonad and visceral mass, digestive gland, adductor muscle, siphon and 'other' tissue) is investigated. A marked increase in weight, reflected in an increase in weight of the component parts, was recorded in Autumn 1979. This is thought to be related to an exceptional increase in the phytoplankton at this time. Although a relationship between the biochemical cycle and reproductive cycle remains uncertain, definite seasonal changes were recorded in the respiration rate of Lutraria. At 10°C, the maximum rate of a standard 20g animal was 0.1283m1s 02/g. dry wt./hr. in May 1980 and the minimum rate was 0.O59mls 02/g. dry wt./hr. in October 1980. The effect of temperature on respiration rate was also investigated. Significant differences were recorded for five experimental temperatures (10°C, 15°C, 20°C, 25°C and 30 °C) in August and October but only between two temperatures (10 C and 30 C) in April. There was a decrease in respiration rate at 30 C in August and October, but an increase in April. Respiration rate is affected by a reduction in oxygen tension. A variety of responses were recorded with a small degree of regulation shown. Individuals of Lutraria were able to survive 48 hours under anaerobic conditions. In fully oxygenated conditions heart rate ranged from 4-15 beats per minute with an average of 8 beats per minute. Heart beat was markedly affected by changes in temperature and oxygen tension, increasing to a maximum 22 beats per minute at 25 C, and decreasing to a minimum 2 beats per minute in anaerobic conditions. Heart rate is reduced (12 beats per minute to 5 beats per minute) on exposure to air. Lutraria exhibits an intermittent pattern of pumping activity. Under normal conditions 35% of the time is spent pumping and this Increases as oxygen is reduced (3.00mls 02/litre) to 65% of the time spent pumping. 15. Under normal conditions the respiratory flow varies between 0.382 litres per hour and 1.023 litres per hxir. Adult Lutraria maintain their ability to burrow, albeit slowly.
Resumo:
Le succès écologique des organismes dépend principalement de leur phénotype. Une composante important du phénotype est la morphologie fonctionnelle car elle influence la performance d’un organisme donné dans un milieu donné et donc reflète son écologie. Des disparités dans la morphologie fonctionnelle ou dans le développement entre espèces peuvent donc mener à des différences écologiques. Ce projet évalue le rôle des mécanismes de variation morphologique dans la production de différences écologiques entre espèces au sein des poissons hybrides du complexe Chrosomus eos-neogaeus. En utilisant la microtomodensitométrie à rayons X et la morphométrie géométrique 3D, la forme des éléments des mâchoires est décrite pour comparer la variation morphologique et les différences développementales entre les membres du complexe C. eos neogaeus. Les hybrides présentent autant de variation phénotypique que les espèces parentales et présentent des phénotypes nouveaux, dit transgressifs. Les hybrides présentent aussi des différences marquées avec les espèces parentales dans leur allométrie et dans leur intégration phénotypique. Finalement, ceux-ci semblent être plastiques et en mesure de modifier leur phénotype pour occuper plusieurs environnements. L’entièreté de ces résultats suggère que des changements dans le développement des hybrides entraînent une différenciation phénotypique et écologique avec les espèces parentales.
Resumo:
Le succès écologique des organismes dépend principalement de leur phénotype. Une composante important du phénotype est la morphologie fonctionnelle car elle influence la performance d’un organisme donné dans un milieu donné et donc reflète son écologie. Des disparités dans la morphologie fonctionnelle ou dans le développement entre espèces peuvent donc mener à des différences écologiques. Ce projet évalue le rôle des mécanismes de variation morphologique dans la production de différences écologiques entre espèces au sein des poissons hybrides du complexe Chrosomus eos-neogaeus. En utilisant la microtomodensitométrie à rayons X et la morphométrie géométrique 3D, la forme des éléments des mâchoires est décrite pour comparer la variation morphologique et les différences développementales entre les membres du complexe C. eos neogaeus. Les hybrides présentent autant de variation phénotypique que les espèces parentales et présentent des phénotypes nouveaux, dit transgressifs. Les hybrides présentent aussi des différences marquées avec les espèces parentales dans leur allométrie et dans leur intégration phénotypique. Finalement, ceux-ci semblent être plastiques et en mesure de modifier leur phénotype pour occuper plusieurs environnements. L’entièreté de ces résultats suggère que des changements dans le développement des hybrides entraînent une différenciation phénotypique et écologique avec les espèces parentales.
Resumo:
Ediacaran fronds are key components of terminal-Proterozoic ecosystems. They represent one of the most widespread and common body forms ranging across all major faunal localities and time slices postdating the Gaskiers glaciation, but uncertainty over their phylogenetic affinities has led to uncertainty over issues of homology and functional morphology between, and within, organisms displaying this ecomorphology. Here we present the first large scale, multi-group cladistic analysis of Ediacaran organisms sampling 20 ingroup taxa with previously asserted affinities to the Arboreomorpha, Erniettomorpha and Rangeomorpha. Using a newly derived morphological character matrix that incorporates multiple axes of potential phylogenetically informative data, including architectural, developmental, and structural qualities, we seek to illuminate the evolutionary history of these organisms. We find strong support for existing classification schema and devise apomorphy-based definitions for each of the three frondose clades examined here. Through a rigorous cladistics framework it is possible to discern the pattern of evolution within, and between, these clades, including the identification of homoplasies and functional constraints. This work both validates earlier studies of Ediacaran groups and accentuates instances where previous assumptions of their natural history are uninformative.
Resumo:
A morphological and morphometric study of the lung of the newborn quokka wallaby (Setonix brachyurus) was undertaken to assess its morphofunctional status at birth. Additionally, skin structure and morphometry were investigated to assess the possibility of cutaneous gas exchange. The lung was at canalicular stage and comprised a few conducting airways and a parenchyma of thick-walled tubules lined by stretches of cuboidal pneumocytes alternating with squamous epithelium, with occasional portions of thin blood-gas barrier. The tubules were separated by abundant intertubular mesenchyme, aggregations of developing capillaries and mesenchymal cells. Conversion of the cuboidal pneumocytes to type I cells occurred through cell broadening and lamellar body extrusion. Superfluous cuboidal cells were lost through apoptosis and subsequent clearance by alveolar macrophages. The establishment of the thin blood-gas barrier was established through apposition of the incipient capillaries to the formative thin squamous epithelium. The absolute volume of the lung was 0.02 +/- 0.001 cm(3) with an air space surface area of 4.85 +/- 0.43 cm(2). Differentiated type I pneumocytes covered 78% of the tubular surface, the rest 22% going to long stretches of type II cells, their precursors or low cuboidal transitory cells with sparse lamellar bodies. The body weight-related diffusion capacity was 2.52 +/- 0.56 mL O(2) min(-1) kg(-1). The epidermis was poorly developed, and measured 29.97 +/- 4.88 microm in thickness, 13% of which was taken by a thin layer of stratum corneum, measuring 4.87 +/- 0.98 microm thick. Superficial capillaries were closely associated with the epidermis, showing the possibility that the skin also participated in some gaseous exchange. Qualitatively, the neonate quokka lung had the basic constituents for gas exchange but was quantitatively inadequate, implying the significance of percutaneous gas exchange.
Resumo:
Includes bibliographical references.
Resumo:
Diabetic peripheral neuropathy (DPN) is one of the most debilitating complications of diabetes. DPN is a major cause of foot ulceration and lower limb amputation. Early diagnosis and management is a key factor in reducing morbidity and mortality. Current techniques for clinical assessment of DPN are relatively insensitive for detecting early disease or involve invasive procedures such as skin biopsies. There is a need for less painful, non-invasive and safe evaluation methods. Eye care professionals already play an important role in the management of diabetic retinopathy; however recent studies have indicated that the eye may also be an important site for the diagnosis and monitoring of neuropathy. Corneal nerve morphology has been shown to be a promising marker of diabetic neuropathy occurring elsewhere in the body, and emerging evidence tentatively suggests that retinal anatomical markers and a range of functional visual indicators could similarly provide useful information regarding neural damage in diabetes – although this line of research is, as yet, less well established. This review outlines the growing body of evidence supporting a potential diagnostic role for retinal structure and visual functional markers in the diagnosis and monitoring of peripheral neuropathy in diabetes.
Resumo:
Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possible morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of graphene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.
Resumo:
Large arrays and networks of carbon nanotubes, both single- and multi-walled, feature many superior properties which offer excellent opportunities for various modern applications ranging from nanoelectronics, supercapacitors, photovoltaic cells, energy storage and conversation devices, to gas- and biosensors, nanomechanical and biomedical devices etc. At present, arrays and networks of carbon nanotubes are mainly fabricated from the pre-fabricated separated nanotubes by solution-based techniques. However, the intrinsic structure of the nanotubes (mainly, the level of the structural defects) which are required for the best performance in the nanotube-based applications, are often damaged during the array/network fabrication by surfactants, chemicals, and sonication involved in the process. As a result, the performance of the functional devices may be significantly degraded. In contrast, directly synthesized nanotube arrays/networks can preclude the adverse effects of the solution-based process and largely preserve the excellent properties of the pristine nanotubes. Owing to its advantages of scale-up production and precise positioning of the grown nanotubes, catalytic and catalyst-free chemical vapor depositions (CVD), as well as plasma-enhanced chemical vapor deposition (PECVD) are the methods most promising for the direct synthesis of the nanotubes.