945 resultados para FRACTURE PROPERTIES
Resumo:
A series of tensile and three-point bending studies was conducted at various temperatures and loading rates using phenolphthalein polyether ketone (PEK-C). Yield stress, Young's modulus, fracture toughness, and crack opening displacement data were obtained for various conditions. In general, both yield stress and Young's modulus increase with decreasing temperature. However, the relationships between fracture toughness, loading rate, and temperature are very complex. This behavior is due to the simultaneous intersection of viscoelasticity and localized plastic deformation. The increased yield stress is the main factor contributing to the reduction in fracture toughness and crack opening displacement. The relationship between fracture toughness and yield stress are discussed. (C) 1995 John Wiley and Sons, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p < 0.05). The factors "alloy" and "casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.
Resumo:
The book presents results of comprehensive geological and geophysical studies, carried out in the Cape Verde fault zone in the 3-rd cruise of R/V Akademik Nikolaj Strakhov (1986). Detailed characterization of bottom relief, thickness and structure of the sedimentary cover, magnetic field, crust structure, lithology and stratigraphy of sediments, petrography and geochemistry of magmatic rocks. Conclusions about tectonic layering of the crust and upper mantle in the fault zone, and about a concurrent structural section of large mantle inhomogeneities have been done. The book is the first monographic description of a major fault structure of the ocean floor.
Resumo:
Viscoelastic asphalt binder plays an important role in bonding individual aggregate particles and contributes to the durability and stability of asphalt pavement. When asphalt binder is subjected to cyclic loading, deformation and fracture may develop simultaneously within it, leading to the deterioration of material properties and eventually fatigue failure. Research has found that some degree of recovery may develop if rest periods are applied after fatigue deterioration. However, it is not clear whether such recovery is caused by fracture healing, viscoelastic recovery, or both. This paper presents an analysis to differentiate the contributions of fracture healing and viscoelastic recovery to the asphalt binder during rest periods. It also evaluates the damage caused by deformation and fracture during a fatigue process. It is found that viscoelastic recovery plays an important role in the instant increase in the dynamic shear modulus at the beginning of the rest period. The effect of fracture healing on dynamic shear modulus recovery is more dominant in the long term. A healing index is developed based only on the fracture healing of asphalt binder, excluding the effect of viscoelastic recovery. It can be used to evaluate the true healing properties of different asphalt binders. Copyright © 2014 by ASTM International.
Resumo:
This research analyzed the spatial relationship between a mega-scale fracture network and the occurrence of vegetation in an arid region. High-resolution aerial photographs of Arches National Park, Utah were used for digital image processing. Four sets of large-scale joints were digitized from the rectified color photograph in order to characterize the geospatial properties of the fracture network with the aid of a Geographic Information System. An unsupervised landcover classification was carried out to identify the spatial distribution of vegetation on the fractured outcrop. Results of this study confirm that the WNW-ESE alignment of vegetation is dominantly controlled by the spatial distribution of the systematic joint set, which in turn parallels the regional fold axis. This research provides insight into the spatial heterogeneity inherent to fracture networks, as well as the effects of jointing on the distribution of surface vegetation in desert environments.
Resumo:
Acknowledgements The authors thank the Ministry of Natural Resources in Iraqi Kurdistan Region for permission to publish this paper. Gulf Keystone Petroleum Ltd. and HKN Energy Ltd. are acknowledged for providing the subsurface datasets. Great thanks to Colin Taylor at the University of Aberdeen for his assistance in the laboratory work. Thoughtful reviews by two anonymous referees improved the clarity of the paper. Graham Banks is thanked for his helpful and constructive review on a late version of the manuscript, which has significantly improved this paper.
Resumo:
This paper presents a preliminary study on the dielectric properties and curing of three different types of epoxy resins mixed at various stichiometric mixture of hardener, flydust and aluminium powder under microwave energy. In this work, the curing process of thin layers of epoxy resins using microwave radiation was investigated as an alternative technique that can be implemented to develop a new rapid product development technique. In this study it was observed that the curing time and temperature were a function of the percentage of hardener and fillers presence in the epoxy resins. Initially dielectric properties of epoxy resins with hardener were measured which was directly correlated to the curing process in order to understand the properties of cured specimen. Tensile tests were conducted on the three different types of epoxy resins with hardener and fillers. Modifying dielectric properties of the mixtures a significant decrease in curing time was observed. In order to study the microstructural changes of cured specimen the morphology of the fracture surface was carried out by using scanning electron microscopy.
Resumo:
The fracture healing process is modulated by the mechanical environment created by imposed loads and motion between the bone fragments. Contact between the fragments obviously results in a significantly different stress and strain environment to a uniform fracture gap containing only soft tissue (e.g. haematoma). The assumption of the latter in existing computational models of the healing process will hence exaggerate the inter-fragmentary strain in many clinically-relevant cases. To address this issue, we introduce the concept of a contact zone that represents a variable degree of contact between cortices by the relative proportions of bone and soft tissue present. This is introduced as an initial condition in a two-dimensional iterative finite element model of a healing tibial fracture, in which material properties are defined by the volume fractions of each tissue present. The algorithm governing the formation of cartilage and bone in the fracture callus uses fuzzy logic rules based on strain energy density resulting from axial compression. The model predicts that increasing the degree of initial bone contact reduces the amount of callus formed (periosteal callus thickness 3.1mm without contact, down to 0.5mm with 10% bone in contact zone). This is consistent with the greater effective stiffness in the contact zone and hence, a smaller inter-fragmentary strain. These results demonstrate that the contact zone strategy reasonably simulates the differences in the healing sequence resulting from the closeness of reduction.
Resumo:
Vertebrplasty involved injecting cement into a fractured vertebra to provide stabilisation. There is clinical evidence to suggest however that vertebroplasty may be assocated with a higher risk of adjacent vertebral fracture; which may be due to the change in material properties of the post-procedure vertebra modifying the transmission of mechanical stresses to adjacent vertebrae.