4 resultados para FRACTURE PROPERTIES

em CaltechTHESIS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material. Next, we present an experimental assessment of the optimal scaling laws. We show that when the specific fracture energy is renormalized in a manner suggested by the optimal scaling laws, the data falls within the bounds predicted by the analysis and, moreover, they ostensibly collapse---with allowances made for experimental scatter---on a master curve dependent on the hardening exponent, but otherwise material independent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metallic glasses (MGs) are a relatively new class of materials discovered in 1960 and lauded for its high strengths and superior elastic properties. Three major obstacles prevent their widespread use as engineering materials for nanotechnology and industry: 1) their lack of plasticity mechanisms for deformation beyond the elastic limit, 2) their disordered atomic structure, which prevents effective study of their structure-to-property relationships, and 3) their poor glass forming ability, which limits bulk metallic glasses to sizes on the order of centimeters. We focused on understanding the first two major challenges by observing the mechanical properties of nanoscale metallic glasses in order to gain insight into its atomic-level structure and deformation mechanisms. We found that anomalous stable plastic flow emerges in room-temperature MGs at the nanoscale in wires as little as ~100 nanometers wide regardless of fabrication route (ion-irradiated or not). To circumvent experimental challenges in characterizing the atomic-level structure, extensive molecular dynamics simulations were conducted using approximated (embedded atom method) potentials to probe the underlying processes that give rise to plasticity in nanowires. Simulated results showed that mechanisms of relaxation via the sample free surfaces contribute to tensile ductility in these nanowires. Continuing with characterizing nanoscale properties, we studied the fracture properties of nano-notched MGnanowires and the compressive response of MG nanolattices at cryogenic (~130 K) temperatures. We learned from these experiments that nanowires are sensitive to flaws when the (amorphous) microstructure does not contribute stress concentrations, and that nano-architected structures with MG nanoribbons are brittle at low temperatures except when elastic shell buckling mechanisms dominate at low ribbon thicknesses (~20 nm), which instead gives rise to fully recoverable nanostructures regardless of temperature. Finally, motivated by understanding structure-to-property relationships in MGs, we studied the disordered atomic structure using a combination of in-situ X-ray tomography and X-ray diffraction in a diamond anvil cell and molecular dynamics simulations. Synchrotron X-ray experiments showed the progression of the atomic-level structure (in momentum space) and macroscale volume under increasing hydrostatic pressures. Corresponding simulations provided information on the real space structure, and we found that the samples displayed fractal scaling (rd ∝ V, d < 3) at short length scales (< ~8 Å), and exhibited a crossover to a homogeneous scaling (d = 3) at long length scales. We examined this underlying fractal structure of MGs with parallels to percolation clusters and discuss the implications of this structural analogy to MG properties and the glass transition phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis aims at a simple one-parameter macroscopic model of distributed damage and fracture of polymers that is amenable to a straightforward and efficient numerical implementation. The failure model is motivated by post-mortem fractographic observations of void nucleation, growth and coalescence in polyurea stretched to failure, and accounts for the specific fracture energy per unit area attendant to rupture of the material.

Furthermore, it is shown that the macroscopic model can be rigorously derived, in the sense of optimal scaling, from a micromechanical model of chain elasticity and failure regularized by means of fractional strain-gradient elasticity. Optimal scaling laws that supply a link between the single parameter of the macroscopic model, namely the critical energy-release rate of the material, and micromechanical parameters pertaining to the elasticity and strength of the polymer chains, and to the strain-gradient elasticity regularization, are derived. Based on optimal scaling laws, it is shown how the critical energy-release rate of specific materials can be determined from test data. In addition, the scope and fidelity of the model is demonstrated by means of an example of application, namely Taylor-impact experiments of polyurea rods. Hereby, optimal transportation meshfree approximation schemes using maximum-entropy interpolation functions are employed.

Finally, a different crazing model using full derivatives of the deformation gradient and a core cut-off is presented, along with a numerical non-local regularization model. The numerical model takes into account higher-order deformation gradients in a finite element framework. It is shown how the introduction of non-locality into the model stabilizes the effect of strain localization to small volumes in materials undergoing softening. From an investigation of craze formation in the limit of large deformations, convergence studies verifying scaling properties of both local- and non-local energy contributions are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An understanding of the mechanics of nanoscale metals and semiconductors is necessary for the safe and prolonged operation of nanostructured devices from transistors to nanowire- based solar cells to miniaturized electrodes. This is a fascinating but challenging pursuit because mechanical properties that are size-invariant in conventional materials, such as strength, ductility and fracture behavior, can depend critically on sample size when materials are reduced to sub- micron dimensions. In this thesis, the effect of nanoscale sample size, microstructure and structural geometry on mechanical strength, deformation and fracture are explored for several classes of solid materials. Nanocrystalline platinum nano-cylinders with diameters of 60 nm to 1 μm and 12 nm sized grains are fabricated and tested in compression. We find that nano-sized metals containing few grains weaken as sample diameter is reduced relative to grain size due to a change from deformation governed by internal grains to surface grain governed deformation. Fracture at the nanoscale is explored by performing in-situ SEM tension tests on nanocrystalline platinum and amorphous, metallic glass nano-cylinders containing purposely introduced structural flaws. It is found that failure location, mechanism and strength are determined by the stress concentration with the highest local stress whether this is at the structural flaw or a microstructural feature. Principles of nano-mechanics are used to design and test mechanically robust hierarchical nanostructures with structural and electrochemical applications. 2-photon lithography and electroplating are used to fabricate 3D solid Cu octet meso-lattices with micron- scale features that exhibit strength higher than that of bulk Cu. An in-situ SEM lithiation stage is developed and used to simultaneously examine morphological and electrochemical changes in Si-coated Cu meso-lattices that are of interest as high energy capacity electrodes for Li-ion batteries.