978 resultados para FLUORESCENCE IN SITU HYBRIDIZATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deletion of the TP53 gene on chromosome 17p13.1 is the prognostic factor associated with the shortest survival in CLL. We used array-based comparative genomic hybridisation (arrayCGH) to identify additional DNA copy number changes in peripheral blood samples from 74 LRF CLL4 trial patients, 37 with >or=5% and 37 without TP53-deleted cells. ArrayCGH reliably detected deletions on 17p, including the TP53 locus, in cases with >or=50%TP53-deleted cells detected by fluorescence in situ hybridisation, plus seven additional cases with deleted regions on 17p excluding TP53. Losses on chromosomal regions 18p and/or 20p were found exclusively in cases with >or=5%TP53-deleted cells (por=5%TP53-deleted cases (p=0.02). In particular, amplification of 2p and deletion of 6q were both more frequent. Cases with >20%TP53-deleted cells had the worst prognosis in the LRF CLL4 trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosome territories constitute the most conspicuous feature of nuclear architecture, and they exhibit non-random distribution patterns in the interphase nucleus. We observed that in cell nuclei from humans with Down Syndrome two chromosomes 21 frequently localize proximal to one another and distant from the third chromosome. To systematically investigate whether the proximally positioned chromosomes were always the same in all cells, we developed an approach consisting of sequential FISH and CISH combined with laser-microdissection of chromosomes from the interphase nucleus and followed by subsequent chromosome identification by microsatellite allele genotyping. This approach identified proximally positioned chromosomes from cultured cells, and the analysis showed that the identity of the chromosomes proximally positioned varies. However, the data suggest that there may be a tendency of the same chromosomes to be positioned close to each other in the interphase nucleus of trisomic cells. The protocol described here represents a powerful new method for genome analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systems-level studies of biological systems rely on observations taken at a resolution lower than the essential unit of biology, the cell. Recent technical advances in DNA sequencing have enabled measurements of the transcriptomes in single cells excised from their environment, but it remains a daunting technical problem to reconstruct in situ gene expression patterns from sequencing data. In this thesis I develop methods for the routine, quantitative in situ measurement of gene expression using fluorescence microscopy.

The number of molecular species that can be measured simultaneously by fluorescence microscopy is limited by the pallet of spectrally distinct fluorophores. Thus, fluorescence microscopy is traditionally limited to the simultaneous measurement of only five labeled biomolecules at a time. The two methods described in this thesis, super-resolution barcoding and temporal barcoding, represent strategies for overcoming this limitation to monitor expression of many genes in a single cell. Super-resolution barcoding employs optical super-resolution microscopy (SRM) and combinatorial labeling via-smFISH (single molecule fluorescence in situ hybridization) to uniquely label individual mRNA species with distinct barcodes resolvable at nanometer resolution. This method dramatically increases the optical space in a cell, allowing a large numbers of barcodes to be visualized simultaneously. As a proof of principle this technology was used to study the S. cerevisiae calcium stress response. The second method, sequential barcoding, reads out a temporal barcode through multiple rounds of oligonucleotide hybridization to the same mRNA. The multiplexing capacity of sequential barcoding increases exponentially with the number of rounds of hybridization, allowing over a hundred genes to be profiled in only a few rounds of hybridization.

The utility of sequential barcoding was further demonstrated by adapting this method to study gene expression in mammalian tissues. Mammalian tissues suffer both from a large amount of auto-fluorescence and light scattering, making detection of smFISH probes on mRNA difficult. An amplified single molecule detection technology, smHCR (single molecule hairpin chain reaction), was developed to allow for the quantification of mRNA in tissue. This technology is demonstrated in combination with light sheet microscopy and background reducing tissue clearing technology, enabling whole-organ sequential barcoding to monitor in situ gene expression directly in intact mammalian tissue.

The methods presented in this thesis, specifically sequential barcoding and smHCR, enable multiplexed transcriptional observations in any tissue of interest. These technologies will serve as a general platform for future transcriptomic studies of complex tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common carp Cyprinus carpio genomic DNA repetitive sequence CR1 has been DIG-labeled and hybridized in situ against chromosomes of red common carp (Cyprinus carpio L. Xingguo red var.). It is found that the repetitive sequence CR1 is mainly localized at the centromeric regions of chromosomes of the red common carp, The application of the chromosomal in situ hybridization technique on fish and the relationship between CR1 repetitive sequence distribution and its function have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In amphioxus embryos, the nascent and early mesoderm (including chorda-mesoderm) was visualized by expression of a Brachyury gene (AmBra-2). A band of mesoderm is first detected encircling the earliest (vegetal plate stage) gastrula sub-equatorially. Soon thereafter, the vegetal plate invaginates. resulting in a cap-shaped gastrula with the mesoderm localized at the blastoporal lip and completely encircling the blastopore. As the gastrula stage progresses, DiI (a vital dye) labeling demonstrates that the entire mesoderm is internalized by a slight involution of the epiblast into the hypoblast all around the perimeter of the blastopore. Subsequently. during the early neurula stage, the internalized mesoderm undergoes anterior extension mid-dorsally (as notochord) and dorsolaterally (in paraxial regions when segments will later form). By the late neurula stage, AmBra-2 is no longer transcribed throughout the mesoderm as a whole; instead. expression is detectable only in the posterior mesoderm and in the notochord, but not in par axial mesoderm where definitive somites have formed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genomic constitutions of three taxa of Hystrix Moench, H. patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata, were examined by meiotic pairing behavior and genomic in-situ hybridization. Meiotic pairing in hybrids of H. patula x Pseudoroegneria spicata (St), H. patula x Elymus wawawaiensis (StH), H. patula x H. duthiei ssp. longearistata, H. patula x Psathyrostachys huashanica (Ns(h)), H. duthiei ssp. duthiei x Psa. huashanica, H. duthiei ssp. longearistata x Psa. huashanica, Leymus multicaulis (NsXm) x H. duthiei ssp. longearistata averaged 6.53, 12.83, 1.32, 0.29, 5.18, 5.11 and 10.47 bivalents per cell, respectively. The results indicate that H. patula has the StH genome and H. duthiei ssp. duthiei and H. duthiei ssp. longearistata have the NsXm genome. Results of genomic in-situ hybridization analysis strongly supported the chromosome pairing data; therefore it is concluded that the type species of Hystrix, H. patula, should be included in Elymus, and that H. duthiei ssp. duthiei and H. duthiei ssp. longearistata should be transferred to Leymus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowing the timing, level, cellular localization, and cell type that a gene is expressed in contributes to our understanding of the function of the gene. Each of these features can be accomplished with in situ hybridization to mRNAs within cells. Here we present a radioactive in situ hybridization method modified from Clayton et al. (1988)(1) that has been working successfully in our lab for many years, especially for adult vertebrate brains(2-5). The long complementary RNA (cRNA) probes to the target sequence allows for detection of low abundance transcripts(6,7). Incorporation of radioactive nucleotides into the cRNA probes allows for further detection sensitivity of low abundance transcripts and quantitative analyses, either by light sensitive x-ray film or emulsion coated over the tissue. These detection methods provide a long-term record of target gene expression. Compared with non-radioactive probe methods, such as DIG-labeling, the radioactive probe hybridization method does not require multiple amplification steps using HRP-antibodies and/or TSA kit to detect low abundance transcripts. Therefore, this method provides a linear relation between signal intensity and targeted mRNA amounts for quantitative analysis. It allows processing 100-200 slides simultaneously. It works well for different developmental stages of embryos. Most developmental studies of gene expression use whole embryos and non-radioactive approaches(8,9), in part because embryonic tissue is more fragile than adult tissue, with less cohesion between cells, making it difficult to see boundaries between cell populations with tissue sections. In contrast, our radioactive approach, due to the larger range of sensitivity, is able to obtain higher contrast in resolution of gene expression between tissue regions, making it easier to see boundaries between populations. Using this method, researchers could reveal the possible significance of a newly identified gene, and further predict the function of the gene of interest.