816 resultados para FISH TRYPANOSOMES
Resumo:
Background & aims: There is scarce information about immune function and parenteral. fish oil (FO). The influence of a new parenteral. lipid emulsion (LE) containing fish oil (SMOF) was experimentally evaluated on neutrophils` chemotaxis and macrophages` phagocytosis. Methods: Adult mate Lewis rats (n = 40) were randomized into five groups; one non-surgical. control and four to receive parenteral LE or saline infusion through jugular vein catheterization: SMOF (mixture of 30% medium-chain triglycerides, 30% soybean, 25% olive and 15% fish oils); MCT/LCT (physical mixture of 50% medium-chain triglycerides and 50% soybean oil); MCT/LCT/FO (80% MCT/LCT supplemented with 20% FO) and SS (saline). In the 5th experimental day and after intravenous colloidal carbon injection, blood and tissue (liver, lung and spleen) samples were collected and immunological analyses were performed. Results: LE didn`t influence neutrophil chemotaxis. SMOF didn`t influence phagocytosis (p > 0.05) while MCT/LCT and MCT/LCT/FO LE increased the number of liver and lung resident macrophages that had engaged in phagocytosis compared with CO-NS and SS (p < 0.05). Only MCT/LCT/FO increased the number of spleen resident macrophages that had engaged in phagocytosis (p < 0.05). Conclusions: LE, independently of composition, had no influence on neutrophils` chemotaxis, but showed different effect on phagocytosis by macrophages. SMOF LE had neutral effect while fish oil LE enriched with MCT/LCT LE increased resident-macrophages` phagocytosis. (c) 2007 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.
Resumo:
In ostariophysan fish, the detection of alarm substance released from the skin of a conspecific or a sympatric heterospecific may elicit alarm reactions or antipredator behavioral responses. In this study, experiments were performed to characterize and quantify the behavioral response threshold of Leporinus piau, both individually and in schools, to growing dilutions of conspecific (CAS) and heterospecific skin extract (HAS). The predominant behavioral response to CAS stock stimulation was biphasic for fish held individually, with a brief initial period of rapid swimming followed by a longer period of immobility or reduced swimming activity. As the dilution of skin extract was increased, the occurrence and magnitude of the biphasic alarm response tended to decrease, replaced by a slowing of locomotion. Slowing was the most common antipredator behavior, observed in 62.5% of animals submitted to HAS stimulation. School cohesion, measured as proximity of fish to the center of the school, and swimming activity near the water surface significantly increased after exposure to CAS when compared with the control group exposed to distilled water. Histological analysis of the epidermis revealed the presence of Ostariophysi-like club cells. The presence of these cells and the behavioral responses to conspecific and heterospecific skin extract stimulation suggest the existence of a pheromone alarm system in L. piau similar to that in Ostariophysi, lending further support for the neural processing of chemosensory information in tropical freshwater fish.
Resumo:
The present study provides a detailed description of morphological and hodological aspects of the glomerular nucleus in the weakly electric fish Gymnotus sp., and explores the evolutionary and functional implications flowing from this analysis. The glomerular nucleus of Gymnotus shows numerous morphological similarities with the glomerular nucleus of percomorph fish, although cytoarchitectonically simpler. In addition, congruence of the histochemical acetylcholinesterase (AChE) distribution with cytoarchitectonic data suggests that the glomerular nucleus, together with the ventromedial cell group of the medial subdivision of the preglomerular complex (PGm-vmc) rostrally, and the subglomerular nucleus (as identified by Maler et al. [1991] J Chem Neuroanat 4:1-38) caudally, may form a distinct longitudinally organized glomerular complex. Our results show that an important source of sensory afferents to the glomerular nucleus originates in the pretectal and electrosensorius nuclei. The glomerular nucleus in turn projects to the hypothalamus (inferior lobe and anterior hypothalamus), to the anterior tuberal nucleus, and to the medial region of the preglomerular nucleus (PGm). These data suggest that visual and electrosensory information reach the glomerular nucleus and are relayed to the hypothalamus and, via PGm, to the pallium. Such connections are similar to those of the glomerular nucleus in percomorphs and the posterior pretectal nucleus in osteoglossomorph, esocids, and salmonids, where they comprise one component of a visual processing pathway. In Gymnotiform fish, however, the pretectal region that projects to the glomerular nucleus is dominated by electrosensory input (visual input is minor), which is consistent with the dominant role of electroreception in these fish. J. Comp. Neurol. 519:1658-1676, 2011. (c) 2011 Wiley-Liss, Inc.
Resumo:
The aim of this study was to determine if Toxoplasma gondii are present in oysters (Crassostrea rhizophorae) and mussels (Mytella guyanensis) under natural conditions using a bioassay in mice and molecular detection methods. We first compared two standard protocols for DNA extraction, phenol-chloroform (PC) and guanidine-thiocyanate (GT), for both molluscs. A total of 300 oysters and 300 mussels were then acquired from the fish market in Santos city, Sao Paulo state, Brazil, between March and August of 2008 and divided into 60 groups of 5 oysters and 20 groups of 15 mussels. To isolate the parasite, five mice were orally inoculated with sieved tissue homogenates from each group of oysters or mussels. For molecular detection of T. gondii, DNA from mussels was extracted using the PC method and DNA from oysters was extracted using the GT method. A nested-PCR (Polymerase Chain Reaction) based on the amplification of a 155 bp fragment from the B1 gene of T. gondii was then performed. Eleven PCR-RFLP (Restriction Fragment Length Polymorphism) markers, SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, CS3 and Apico, were used to genotype positive samples. There was no isolation of the parasite by bioassay in mice. T. gondii was not detected in any of the groups of mussels by nested-PCR. DNA of T. gondii was apparently detected by nested-PCR in 2 groups of oysters (3.3%). Genotyping of these two positive samples was not successful. The results suggest that oysters of the species C. rhizophorae, the most common species from the coast of Sao Paulo, can filter and retain T. gondii oocysts from the marine environment. Ingestion of raw oysters as a potential transmission source of T. gondii to humans and marine mammals should be further investigated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Many coral reef fish are beautifully coloured and the reflectance spectra of their colour patterns may include UVa wavelengths (315-400 nm) that are largely invisible to the human eye (Losey, G. S., Cronin, T. W., Goldsmith, T. H., David, H., Marshall, N. J., & McFarland, W.N, (1999). The uv visual world of fishes: a review. Journal of Fish Biology, 54, 921-943; Marshall, N. J. & Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature, 401, 873-874). Before the possible functional significance of UV patterns can be investigated, it is of course essential to establish whether coral reef fishes can see ultraviolet light. As a means of tackling this question, in this study the transmittance of the ocular media of 211 coral reef fish species was measured. It was found that the ocular media of 50.2% of the examined species strongly absorb light of wavelengths below 400 nm, which makes the perception of UV in these fish very unlikely. The remaining 49.8% of the species studied possess ocular media that do transmit UV light, making the perception of UV possible. (C) 2001 Elsevier Science Ltd. All rights reserved.