961 resultados para FINE PARTICULATE MATTER SOURCES
Resumo:
During sugar cane harvesting season, which occurs from May to November of each year, the crops are burnt, cut, and transported to the mills. There are reports showing that mutagenic activity and PAH content increase during harvesting season in some areas of Sao Paulo State in comparison with nonharvesting periods. The objective of this work was to preliminarily characterize the mutagenic activity of the total organic extracts as well as corresponding organic fractions of airborne particulate matter (PM) collected twice from two cities, Araraquara (ARQ) and Piracicaba (PRB), during sugar cane harvesting season using the Salmonella/microsome microssuspension assay. One sample collected in Sao Paulo metropolitan area was also included. The mutagenicity of the total extracts ranged from 55 to 320 revertants per cubic meter without the addition of S9 and from not detected to 57 revertants per cubic meter in the presence of S9 in areas with sugar cane plantations. Of the three fractions analyzed, the most polar ones (nitro and oxy) were the most potent. A comparison of the response of TA98 with YG1041 and the increased potencies without S9 indicated that nitro compounds are causing the observed effect. More studies are necessary to verify the sources of the mutagenic activity such as burning of vegetal biomass and combustion of heavy duty vehicles used to transport the sugar cane to the mills. The Salmonella/microsome assay can be an important tool to monitor the atmosphere for mutagenicity during sugar cane harvesting season.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to verify the impact of inhalable particulate matter (PM10) on cancer incidence and mortality in the city of Sao Paulo, Brazil. Statistical techniques were used to investigate the relationship between PM10 on cancer incidence and mortality in selected districts. For some types of cancer (skin, lung, thyroid, larynx, and bladder) and some periods, the correlation coefficients ranged from 0.60 to 0.80 for incidence. Lung cancer mortality showed more correlations during the overall period. Spatial analysis showed that districts distant from the city center showed higher than expected relative risk, depending on the type of cancer According to the study, urban PM10 can contribute to increased incidence of some cancers and may also contribute to increased cancer mortality. The results highlight the need to adopt measures to reduce atmospheric PM10 levels and the importance of their continuous monitoring.
Resumo:
Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes, an international specialty conference sponsored by the American Association for Aerosol Research, was held to address key uncertainties in our understanding of adverse health effects related to air pollution and to integrate and disseminate results from recent scientific studies that cut across a range of air pollution-related disciplines. The Conference addressed the science of air pollution and health within a multipollutant framework (herein "multipollutant" refers to gases and particulate matter mass, components, and physical properties), focusing on five key science areas: sources, atmospheric sciences, exposure, dose, and health effects. Eight key policy-relevant science questions integrated across various parts of the five science areas and a ninth question regarding findings that provide policy-relevant insights served as the framework for the meeting. Results synthesized from this Conference provide new evidence, reaffirm past findings, and offer guidance for future research efforts that will continue to incrementally advance the science required for reducing uncertainties in linking sources, air pollutants, human exposure, and health effects. This paper summarizes the Conference findings organized around the science questions. A number of key points emerged from the Conference findings. First, there is a need for greater focus on multipollutant science and management approaches that include more direct studies of the mixture of pollutants from sources with an emphasis on health studies at ambient concentrations. Further, a number of research groups reaffirmed a need for better understanding of biological mechanisms and apparent associations of various health effects with components of particulate matter (PM), such as elemental carbon, certain organic species, ultrafine particles, and certain trace elements such as Ni, V, and Fe(II), as well as some gaseous pollutants. Although much debate continues in this area, generation of reactive oxygen species induced by these and other species present in air pollution and the resulting oxidative stress and inflammation were reiterated as key pathways leading to respiratory and cardiovascular outcomes. The Conference also underscored significant advances in understanding the susceptibility of populations, including the role of genetics and epigenetics and the influence of socioeconomic and other confounding factors and their synergistic interactions with air pollutants. Participants also pointed out that short-and long-term intervention episodes that reduce pollution from sources and improve air quality continue to indicate that when pollution decreases so do reported adverse health effects. In the limited number of cases where specific sources or PM2.5 species were included in investigations, specific species are often associated with the decrease in effects. Other recent advances for improved exposure estimates for epidemiological studies included using new technologies such as microsensors combined with cell phone and integrated into real-time communications, hybrid air quality modeling such as combined receptor-and emission-based models, and surface observations used with remote sensing such as satellite data.
Resumo:
The composition of the atmosphere is frequently perturbed by the emission of gaseous and particulate matter from natural as well as anthropogenic sources. While the impact of trace gases on the radiative forcing of the climate is relatively well understood the role of aerosol is far more uncertain. Therefore, the study of the vertical distribution of particulate matter in the atmosphere and its chemical composition contribute valuable information to bridge this gap of knowledge. The chemical composition of aerosol reveals information on properties such as radiative behavior and hygroscopicity and therefore cloud condensation or ice nucleus potential. rnThis thesis focuses on aerosol pollution plumes observed in 2008 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) campaign over Greenland in June/July and CONCERT (Contrail and Cirrus Experiment) campaign over Central and Western Europe in October/November. Measurements were performed with an Aerodyne compact time-of-flight aerosol mass spectrometer (AMS) capable of online size-resolved chemical characterization of non-refractory submicron particles. In addition, the origins of pollution plumes were determined by means of modeling tools. The characterized pollution episodes originated from a large variety of sources and were encountered at distinct altitudes. They included pure natural emissions from two volcanic eruptions in 2008. By the time of detection over Western Europe between 10 and 12 km altitude the plume was about 3 months old and composed to 71 % of particulate sulfate and 21 % of carbonaceous compounds. Also, biomass burning (BB) plumes were observed over Greenland between 4 and 7 km altitude (free troposphere) originating from Canada and East Siberia. The long-range transport took roughly one and two weeks, respectively. The aerosol was composed of 78 % organic matter and 22 % particulate sulfate. Some Canadian and all Siberian BB plumes were mixed with anthropogenic emissions from fossil fuel combustion (FF) in North America and East Asia. It was found that the contribution of particulate sulfate increased with growing influences from anthropogenic activity and Asia reaching up to 37 % after more than two weeks of transport time. The most exclusively anthropogenic emission source probed in the upper troposphere was engine exhaust from commercial aircraft liners over Germany. However, in-situ characterization of this aerosol type during aircraft chasing was not possible. All long-range transport aerosol was found to have an O:C ratio close to or greater than 1 implying that low-volatility oxygenated organic aerosol was present in each case despite the variety of origins and the large range in age from 3 to 100 days. This leads to the conclusion that organic particulate matter reaches a final and uniform state of oxygenation after at least 3 days in the free troposphere. rnExcept for aircraft exhaust all emission sources mentioned above are surface-bound and thus rely on different types of vertical transport mechanisms, such as direct high altitude injection in the case of a volcanic eruption, or severe BB, or uplift by convection, to reach higher altitudes where particles can travel long distances before removal mainly caused by cloud scavenging. A lifetime for North American mixed BB and FF aerosol of 7 to 11 days was derived. This in consequence means that emission from surface point sources, e.g. volcanoes, or regions, e.g. East Asia, do not only have a relevant impact on the immediate surroundings but rather on a hemispheric scale including such climate sensitive zones as the tropopause or the Arctic.
Resumo:
The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during 1988-2002 in a large spatial domain for use in studying health effects in the Nurses' Health Study. We develop a conceptually simple spatio-temporal model that uses a rich set of covariates. The model is used to estimate concentrations of PM10 for the full time period and PM2.5 for a subset of the period. For the earlier part of the period, 1988-1998, few PM2.5 monitors were operating, so we develop a simple extension to the model that represents PM2.5 conditionally on PM10 model predictions. In the epidemiological analysis, model predictions of PM10 are more strongly associated with health effects than when using simpler approaches to estimate exposure. Our modeling approach supports the application in estimating both fine-scale and large-scale spatial heterogeneity and capturing space-time interaction through the use of monthly-varying spatial surfaces. At the same time, the model is computationally feasible, implementable with standard software, and readily understandable to the scientific audience. Despite simplifying assumptions, the model has good predictive performance and uncertainty characterization.
Resumo:
The lipid composition of particulate matter in oceanic environments can provide informations on the nature and origin of the organic matter as well as on their transformation processes. Molecular characteristics for lipids in the Arctic environment have been used as indicators of the sources and transformation of organic particulate matter (Smith et al., 1997; Fahl and Stein, 1997, 1999). However, the features of the lipid composition of particulate matter in the Arctic with its high seasonality of ice Cover and primary productivity has been studied insufficiently. Lipids are one of the most important compounds of organic matter. On the one hand, the composition of lipids is a result of the variability of biological sources (phyto- and zooplankton, higher plants, bacteria etc.). On the other hand, the lipid composition of particulate matter is undergone significant alteration during vertical transport. The organic matter balance in the Arctic marginal seas, such as the Kara and Laptev seas, is characterized by the significant supply of dissolved and particulate material by the major Eurasian rivers - Ob, Yenisei and Lena (Cauwet and Sidorov, 1996; Gordeev et al., 1996, Martin et al., 1993). In relation to the world's ocean the primary productivity values are lower in the Arctic seas due to the ice-cover. However local increased values of primary productivity can be connected with the melting processes inducing increased phytoplankton growth near ice-edge (Nelson et al., 1989; Fahl and Stein, 1997) and enhanced river supply of nutrients, These features can influence the proportion of allochtonous and autochtonous components of the organic matter in the Arctic marginal seas (Fahl and Stein, 1997; Stein and Fahl, 1999). Furthermore, increased lipid contents in aquatic environments were found near density discontinuities (Parish et al., 1988). Although being less informative than lipid studies on the molecular level the character of lipid composition analysis on the group could also be used for studying of particulate organic matter and its transformation in sedimentation processes in the Arctic. In this paper the investigation of the characteristics of lipid composition performed by Alexandrova and Shevchenko (1997) in Arctic seas was continued.
Resumo:
In this paper authors present and discuss data on distribution and mineral composition of suspended particulate matter (SPM) in the Franz Victoria Trough, collected during Cruise 14 of scientific icebreaker Akademik Fedorov in the northern Barents Sea in October 1998. Higher total SPM concentrations (0.4-1.8 mg/l) were measured in the near-bottom layer of the Franz Victoria Strait and central part of the trough. Potential source of mineral particles in SPM is fine fractions of Barents Sea bottom sediments. They form the nepheloid layer, which spreads on the continental slope along the trough together with Barents Sea waters at 350-400 m depth.
Resumo:
An evaluation of the concentration levels of Particulate Matter (PM) was carried out in Madrid (Spain) by introducing the emissions from road dust resuspension. Road dust resuspension emission factors (EF) for different types of vehicles were calculated from EPA-AP42, a global resuspension factor of 0.097 g veh−1km−1 as described in Amato et al. (2010) and a rain-dependent correction factor. With these resuspension EFs, a simulation at street canyon level was performed with the OSPM model without rainfall. Subsequently, a simulation using the CMAQ model was implemented adding resuspension emissions affected by the rain. These data were compared with monitored data obtained from air quality stations. OSPM model simulations with resuspension EFs but without the effect of rainfall improve the PM estimates in about 20gm−3μ compared to the simulation with default EFs. Total emissions were calculated by adding the emissions estimated with resuspension EFs to the default PM emissions to be used by CMAQ. For the study in the Madrid Area, resuspension emissions are approximately of the same order of magnitude as inventoried emissions. On a monthly scale, rain effects are negligible for resuspension emissions due to the dry weather conditions of Spain. With the exception of April and May, the decrease in resuspension emissions is not >3%. The predicted PM10 concentration increases up to 9μ gm−3 on annual average for each station compared to the same scenario without resuspension. However, in both cases, PM 10 estimates with resuspension are still underestimating observations. It should be noted that although that accounting for resuspension improves the quality of model predictions, other PM sources (e.g., Saharan dust) were not considered in this study.
Resumo:
In the reconstruction of sea surface temperature (SST) from sedimentary archives, secondary sources, lateral transport and selective preservation are considered to be mainly negligible in terms of influencing the primary signal. This is also true for the archaeal glycerol dialkyl glycerol tetraethers (GDGTs) that form the basis for the TEX86 SST proxy. Our samples represent four years variability on a transect off Cape Blanc (NW Africa). We studied the subsurface production, vertical and lateral transport of intact polar lipids and core GDGTs in the water column at high vertical resolution on the basis of suspended particulate matter (SPM) samples from the photic zone, the subsurface oxygen minimum zone (OMZ), nepheloid layers (NL) and the water column between these. Furthermore we compared the water column SPM GDGT composition with that in underlying surface sediments. This is the first study that reports TEX86 values from the precursor intact polar lipids (IPLs) associated with specific head groups (IPL -specific TEX86). We show a clear deviation from the sea surface GDGT composition in the OMZ between 300 and 600 m. Since neither lateral transport nor selective degradation provides a satisfactory explanation for the observed TEX-derived temperature profiles with a bias towards higher temperatures for both core- and IPL -specific TEX86 values, we suggest that subsurface in situ production of archaea with a distinct relationship between lipid biosynthesis and temperature is the responsible mechanism. However, in the NW-African upwelling system the GDGT contribution of the OMZ to the surface sediments does not seem to affect the sedimentary TEX86 as it shows no bias and still reflects the signal of the surface waters between 0 and 60 m.
Resumo:
Lipid contents in the upper layer of bottom sediments in the Baltic Sea range from 0.37 to 2.66 mg/g (1.2-25.8% Corg). It is shown that the main factors determining composition of lipids in bottom precipitates are relative roles of different sources of lipids in sediments and conditions of sediment accumulation. Runoff of the Daugava River into the Gulf of Riga contributes simple low-polarity lipids. Sterols and certain bound fatty acids originate in living organic matter. Polar lipids are formed by inheritance of complex phospholipids and glycolipids from plankton and/or by formation of polycondensates.
Resumo:
Traffic emissions are an important contributor to ambient air pollution, especially in large cities featuring extensive and high density traffic networks. Bus fleets represent a significant part of inner city traffic causing an increase in exposure to general public, passengers and drivers along bus routes and at bus stations. Limited information is available on quantification of the levels, and governing parameters affecting the air pollution exposure at bus stations. The presented study investigated the bus emissions-dominated ambient air in a large, inner city bus station, with a specific focus on submicrometer particles. The study’s objectives were (i) quantification of the concentration levels; (ii) characterisation of the spatio-temporal variation; (iii) identification of the parameters governing the emissions levels at the bus station and (iv) assessment of the relationship between particle concentrations measured at the street level (background) and within the bus station. The results show that up to 90% of the emissions at the station are ultrafine particles (smaller than 100 nm), with the concentration levels up to 10 times the value of urban ambient air background (annual) and up to 4 times the local ambient air background. The governing parameters affecting particle concentration at the station were bus flow rate and meteorological conditions (wind velocity). Particle concentration followed a diurnal trend, with an increase in the morning and evening, associated with traffic rush hours. Passengers’ exposure could be significant compared to the average outdoor and indoor exposure levels.
Resumo:
BACKGROUND: A number of epidemiological studies have examined the adverse effect of air pollution on mortality and morbidity. Also, several studies have investigated the associations between air pollution and specific-cause diseases including arrhythmia, myocardial infarction, and heart failure. However, little is known about the relationship between air pollution and the onset of hypertension. OBJECTIVE: To explore the risk effect of particulate matter air pollution on the emergency hospital visits (EHVs) for hypertension in Beijing, China. METHODS: We gathered data on daily EHVs for hypertension, fine particulate matter less than 2.5 microm in aerodynamic diameter (PM(2.5)), particulate matter less than 10 microm in aerodynamic diameter (PM(10)), sulfur dioxide, and nitrogen dioxide in Beijing, China during 2007. A time-stratified case-crossover design with distributed lag model was used to evaluate associations between ambient air pollutants and hypertension. Daily mean temperature and relative humidity were controlled in all models. RESULTS: There were 1,491 EHVs for hypertension during the study period. In single pollutant models, an increase in 10 microg/m(3) in PM(2.5) and PM(10) was associated with EHVs for hypertension with odds ratios (overall effect of five days) of 1.084 (95% confidence interval (CI): 1.028, 1.139) and 1.060% (95% CI: 1.020, 1.101), respectively. CONCLUSION: Elevated levels of ambient particulate matters are associated with an increase in EHVs for hypertension in Beijing, China.
Resumo:
Inadequate air quality and the inhalation of airborne pollutants pose many risks to human health and wellbeing, and are listed among the top environmental risks worldwide. The importance of outdoor air quality was recognised in the 1950s and indoor air quality emerged as an issue some time later and was soon recognised as having an equal, if not greater importance than outdoor air quality. Identification of ambient air pollution as a health hazard was followed by steps, undertaken by a broad range of national and international professional and government organisations, aimed at reduction or elimination of the hazard. However, the process of achieving better air quality is still in progress. The last 10 years or so have seen an unprecedented increase in the interest in, and attention to, airborne particles, with a special focus on their finer size fractions, including ultrafine (< 0.1 m) and their subset, nano particles (< 0.05 m). This paper discusses the current status of scientific knowledge on the links between air quality and health, with a particular focus on airborne particulate matter, and the directions taken by national and international bodies to improve air quality.
Resumo:
-