879 resultados para FAST-ATOM-BOMBARDMENT
Resumo:
In Part I [""Fast Transforms for Acoustic Imaging-Part I: Theory,"" IEEE TRANSACTIONS ON IMAGE PROCESSING], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT.
Resumo:
Eucalyptus is the dominant and most productive planted forest in Brazil, covering around 3.4 million ha for the production of charcoal, pulp, sawtimber, timber plates, wood foils, plywood and for building purposes. At the early establishment of the forest plantations, during the second half of the 1960s, the eucalypt yield was 10 m(3) ha(-1) y(-1). Now, as a result of investments in research and technology, the average productivity is 38 m3 ha(-1) y(-1). The productivity restrictions are related to the following environmental factors, in order of importance: water deficits > nutrient deficiency > soil depth and strength. The clonal forests have been fundamental in sites with larger water and nutrient restrictions, where they out-perform those established from traditional seed-based planting stock. When the environmental limitations are small the productivities of plantations based on clones or seeds appear to be similar. In the long term there are risks to sustainability, because of the low fertility and low reserves of primary minerals in the soils, which are, commonly, loamy and clayey oxisols and ultisols. Usually, a decline of soil quality is caused by management that does not conserve soil and site resources, damages soil physical and chemical characteristics, and insufficient or unbalanced fertiliser management. The problem is more serious when fast-growing genotypes are planted, which have a high nutrient demand and uptake capacity, and therefore high nutrient output through harvesting. The need to mobilise less soil by providing more cover and protection, reduce the nutrient and organic matter losses, preserve crucial physical properties as permeability ( root growth, infiltration and aeration), improve weed control and reduce costs has led to a progressive increase in the use of minimum cultivation practices during the last 20 years, which has been accepted as a good alternative to keep or increase site quality in the long term. In this paper we provide a synthesis and critical appraisal of the research results and practical implications of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations arising from the Brazilian context.
Resumo:
By allowing the estimation of forest structural and biophysical characteristics at different temporal and spatial scales, remote sensing may contribute to our understanding and monitoring of planted forests. Here, we studied 9-year time-series of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on a network of 16 stands in fast-growing Eucalyptus plantations in Sao Paulo State, Brazil. We aimed to examine the relationships between NDVI time-series spanning entire rotations and stand structural characteristics (volume, dominant height, mean annual increment) in these simple forest ecosystems. Our second objective was to examine spatial and temporal variations of light use efficiency for wood production, by comparing time-series of Absorbed Photosynthetically Active Radiation (APAR) with inventory data. Relationships were calibrated between the NDVI and the fractions of intercepted diffuse and direct radiation, using hemispherical photographs taken on the studied stands at two seasons. APAR was calculated from the NDVI time-series using these relationships. Stem volume and dominant height were strongly correlated with summed NDVI values between planting date and inventory date. Stand productivity was correlated with mean NDVI values. APAR during the first 2 years of growth was variable between stands and was well correlated with stem wood production (r(2) = 0.78). In contrast, APAR during the following years was less variable and not significantly correlated with stem biomass increments. Production of wood per unit of absorbed light varied with stand age and with site index. In our study, a better site index was accompanied both by increased APAR during the first 2 years of growth and by higher light use efficiency for stem wood production during the whole rotation. Implications for simple process-based modelling are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A method was optimized for the analysis of omeprazole (OMZ) by ultra-high speed LC with diode array detection using a monolithic Chromolith Fast Gradient RP 18 endcapped column (50 x 2.0 mm id). The analyses were performed at 30 degrees C using a mobile phase consisting of 0.15% (v/v) trifluoroacetic acid (TFA) in water (solvent A) and 0.15% (v/v) TFA in acetonitrile (solvent B) under a linear gradient of 5 to 90% B in 1 min at a flow rate of 1.0 mL/min and detection at 220 nm. Under these conditions, OMZ retention time was approximately 0.74 min. Validation parameters, such as selectivity, linearity, precision, accuracy, and robustness, showed results within the acceptable criteria. The method developed was successfully applied to OMZ enteric-coated pellets, showing that this assay can be used in the pharmaceutical industry for routine QC analysis. Moreover, the analytical conditions established allow for the simultaneous analysis of OMZ metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in the same run, showing that this method can be extended to other matrixes with adequate procedures for sample preparation.
Resumo:
Thioridazine (THD) is a commonly prescribed phenotiazine neuroleptic drug, which is extensively biotransformed in the organism producing as main metabolites sulfoxides and a sulfone by sulfur oxidation Significant differences have been observed in the activity of the THD enantiomers as well as for its main metabolites, and enantioselectivity phenomena have been proved in the metabolic pathway. Here the assignment of the absolute configuration at the sulfur atom of enantiomeric THD-2-sulfoxide (THD-2-SO) has been carried out by circular dichroism (CD) spectroscopy The stereoisomers were separated by HPLC on Chiralpak AS column, recording the CD spectra for the two collected enantiomeric fractions The theoretical electronic CD spectrum has been obtained by the TDDFT/B3LYP/6-31G*. as Boltzmann averaging of the contributions calculated for the most stable conformations of the drug The comparison of the simulated and experimental spectra allowed the absolute configuration at the sulfur atom of the four THD-2-SO stereoisomers to be assigned The developed method should be useful for a reliable correlation between stereochemistry and activity and/or toxicity
Resumo:
Despite the necessity to differentiate chemical species of mercury in clinical specimens, there area limited number of methods for this purpose. Then, this paper describes a simple method for the determination of methylmercury and inorganic mercury in blood by using liquid chromatography with inductively coupled mass spectrometry (LC-ICP-MS) and a fast sample preparation procedure. Prior to analysis, blood (250 mu L) is accurately weighed into 15-mL conical tubes. Then, an extractant solution containing mercaptoethanol, L-cysteine and HCI was added to the samples following sonication for 15 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 5 min on a C18 reverse-phase column with a mobile phase containing 0.05% (v/v) mercaptoethanol, 0.4% (m/v) L-cysteine, 0.06 mol L(-1) ammonium acetate and 5% (v/v) methanol. The method detection limits were found to be 0.25 mu g L(-1) and 0.1 mu Lg L(-1) for inorganic mercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). The proposed method was also applied to the speciation of mercury in blood samples collected from fish-eating communities and from rats exposed to thimerosal. With the proposed method there is a considerable reduction of the time of sample preparation prior to speciation of Hg by LC-ICP-MS. Finally, after the application of the proposed method, we demonstrated an interesting in vivo ethylmercury conversion to inorganic mercury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A simple method for mercury speciation in hair samples with a fast sample preparation procedure using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry is proposed. Prior to analysis, 50 mg of hair samples were accurately weighed into 15 mL conical tubes. Then, an extractant solution containing mercaptoethanol, L-cysteine and HCl was added to the samples following sonication for 10 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of inorganic mercury (Ino-Hg), methylmercury (Met-Hg) and ethylmercury (Et-Hg) was accomplished in less than 8 min on a C18 reverse phase column with a mobile phase containing 0.05% v/v mercaptoethanol, 0.4% m/v L-cysteine, 0.06 mol L(-1) ammonium acetate and 5% v/v methanol. The method detection limits were found to be 15 ng g(-1), 10 ng g(-1) and 38 ng g(-1), for inorganic mercury, methylmercury and ethylmercury, respectively. Sample throughput is 4 samples h(-1) (duplicate). A considerable improvement in the time of analysis was achieved when compared to other published methods. Method accuracy is traceable to Certified Reference Materials (CRMs) 85 and 86 human hair from the International Atomic Energy Agency (IAEA). Finally, the proposed method was successfully applied to the speciation of mercury in hair samples collected from fish-eating communities of the Brazilian Amazon.
Resumo:
A simple and fast method is described for simultaneous determination of methylmercury (MeHg), ethylmercury (Et-Hg) and inorganic mercury (Ino-Hg) in blood samples by using capillary gas chromatography-inductively coupled plasma mass spectrometry (GC-ICP-MS) after derivatization and alkaline digestion. Closed-vessel microwave assisted digestion conditions with tetramethylammonium hydroxide (TMAH) have been optimized. Derivatization by using ethylation and propylation procedures have also been evaluated and compared. The absolute detection limits (using a 1 mu L injection) obtained by GC-ICP-MS with ethylation were 40 fg for MeHg and Ino-Hg, respectively, and with propylation were 50, 20 and 50 fg for MeHg, Et-Hg and Ino-Hg, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). Additional validation is provided based on the comparison of results obtained for mercury speciation in blood samples with the proposed procedure and with a previously reported LC-ICP-MS method. With the new proposed procedure no tedious clean-up steps are required and a considerable improvement of the time of analysis was achieved compared to other methods using GC separation.
Resumo:
We propose a review of recent developments on entanglement and nonclassical effects in collective two-atom systems and present a uniform physical picture of the many predicted phenomena. The collective effects have brought into sharp focus some of the most basic features of quantum theory, such as nonclassical states of light and entangled states of multiatom systems. The entangled states are linear superpositions of the internal states of the system which cannot be separated into product states of the individual atoms. This property is recognized as entirely quantum-mechanical effect and have played a crucial role in many discussions of the nature of quantum measurements and, in particular, in the developments of quantum communications. Much of the fundamental interest in entangled states is connected with its practical application ranging from quantum computation, information processing, cryptography, and interferometry to atomic spectroscopy.
Resumo:
We present experimental results for the dynamics of cold atoms in a far detuned amplitude-modulated optical standing wave. Phase-space resonances constitute distinct peaks in the atomic momentum distribution containing up to 65% of all atoms resulting from a mixed quantum chaotic phase space. We characterize the atomic behavior in classical and quantum regimes and we present the applicable quantum and classical theory, which we have developed and refined. We show experimental proof that the size and the position of the resonances in phase space can be controlled by varying several parameters, such as the modulation frequency, the scaled well depth, the modulation amplitude, and the scaled Planck’s constant of the system. We have found a surprising stability against amplitude noise. We present methods to accurately control the momentum of an ensemble of atoms using these phase-space resonances which could be used for efficient phase-space state preparation.
Resumo:
We describe a novel method of fabricating atom chips that are well suited to the production and manipulation of atomic Bose–Einstein condensates. Our chip was created using a silver foil and simple micro-cutting techniques without the need for photolithography. It can sustain larger currents than conventional chips, and is compatible with the patterning of complex trapping potentials. A near pure Bose–Einstein condensate of 4 × 104 87Rb atoms has been created in a magnetic microtrap formed by currents through wires on the chip. We have observed the fragmentation of atom clouds in close proximity to the silver conductors. The fragmentation has different characteristic features to those seen with copper conductors.
Resumo:
In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.
Fast Structure-Based Assignment of 15N HSQC Spectra of Selectively 15N-Labeled Paramagnetic Proteins
Resumo:
A novel strategy for fast NMR resonance assignment of N-15 HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively N-15-labeled samples. Comparison of sensitive undecoupled N-15 HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia Coll DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy.
Resumo:
Evolution strategies are a class of general optimisation algorithms which are applicable to functions that are multimodal, nondifferentiable, or even discontinuous. Although recombination operators have been introduced into evolution strategies, the primary search operator is still mutation. Classical evolution strategies rely on Gaussian mutations. A new mutation operator based on the Cauchy distribution is proposed in this paper. It is shown empirically that the new evolution strategy based on Cauchy mutation outperforms the classical evolution strategy on most of the 23 benchmark problems tested in this paper. The paper also shows empirically that changing the order of mutating the objective variables and mutating the strategy parameters does not alter the previous conclusion significantly, and that Cauchy mutations with different scaling parameters still outperform the Gaussian mutation with self-adaptation. However, the advantage of Cauchy mutations disappears when recombination is used in evolution strategies. It is argued that the search step size plays an important role in determining evolution strategies' performance. The large step size of recombination plays a similar role as Cauchy mutation.