944 resultados para Existence Theorems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase-singular solid solutions of La0.6Sr0.4Mn1-yMeyO3 (0 <= y <= 0.3) [Me=Li1+, Mg2+, Al3+, Ti4+, Nb5+, Mo6+ or W6+] [LSMey] perovskite of rhombohedral symmetry (space group: R (3) over barc) have been prepared wherein the valence of the diamagnetic substituent at Mn site ranged from 1 to 6. With increasing y-content in LSMey, the metal-insulator (TM-I) transition in resistivity-temperature rho(T) curves shifted to low temperatures. The magnetization studies M(H) as well as the M(T) indicated two groups for LSMey. (1) Group A with Me=Mg, Al, Ti, or Nb which are paramagnetic insulators (PIs) at room temperature with low values of M (< 0.5 mu(B)/Mn); the magnetic transition [ferromagnetic insulator (FMI)-PI] temperature (T-C) shifts to low temperatures and nearly coincides with that of TM-I and the maximum magnetoresistance (MR) of similar to 50% prevails near T-C (approximate to TM-I). (2) Group-B samples with Me=Li, Mo, or W which are FMIs with M-s=3.3-3.58 mu(B)/Mn and marginal reduction in T-C similar to 350 K as compared to the undoped LSMO (T-C similar to 378 K). The latter samples show large temperature differences Delta T=T-c-TM-I, reaching up to similar to 288 K. The maximum MR (similar to 60%) prevails at low temperatures corresponding to the M-I transition TM-I rather than around T-C. High resolution lattice images as well as microscopy analysis revealed the prevalence of inhomogeneous phase mixtures of randomly distributed charge ordered-insulating (COI) bistripes (similar to 3-5 nm width) within FMI charge-disordered regions, yet maintaining crystallographically single phase with no secondary precipitate formation. The averaged ionic radius < r(B)>, valency, or charge/radius ratio < CRR > cannot be correlated with that of large Delta T; hence cannot be used to parametrize the discrepancy between T-C and TM-I. The M-I transition is controlled by the charge conduction within the electronically heterogeneous mixtures (COI bistripes+FMI charge disordered); large MR at TM-I suggests that the spin-ordered FM-insulating regions assist the charge transport, whereas the T-C is associated with the bulk spin ordered regions corresponding to the FMI phase of higher volume fraction of which anchors the T-C to higher temperatures. The present analysis showed that the double-exchange model alone cannot account for the wide bifurcation of the magnetic and electric transitions, contributions from the charge as well as lattice degrees of freedom to be separated from spin/orbital ordering. The heterogeneous phase mixtures (COI+FMI) cannot be treated as of granular composite behavior. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let Ohm be a bounded domain in IRN, N greater than or equal to 2, lambda > 0, q is an element of (0, N - 1) and alpha is an element of (1, N/N-1 In this article we show the existence of at least two positive solutions for the following quasilinear elliptic problem with an exponential type nonlinearity:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove two sided and one sided analogues of the Wiener-Tauberian theorem for the Euclidean motion group, M(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t = 0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher-order ChPT corrections at the second Callan-Treiman point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of different superconducting (S)/ferromagnetic (F) heterostructures grown by pulsed laser deposition reveal that the activation energy (U) for the vortex motion in a high T-c superconductor is reduced remarkably by the presence of F layers. The U exhibits a logarithmic dependence on the applied magnetic field in the S/F bilayers suggesting the existence of decoupled two-dimensional (2D) pancake vortices. This result is discussed in terms of the reduction in the effective S layer thickness and the weakening of the S coherence length due to the presence of F layers. In addition, the U and the superconducting T-c in YBa2Cu3O7-delta/La0.5Sr0.5CoO3 bilayers are observed to be much lower than in the YBa2Cu3O7-delta/La0.7Sr0.3MnO3 ones. This in turn suggests that the degree of spin polarization of the F layer might not play a crucial role for the suppression of superconductivity due to a spin polarized induced pair-breaking effect in S/F bilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of invariants is an important tool for analysis of distributed and concurrent systems modeled by Petri nets. For a large practical system, the computation of desired invariants by the existing techniques is a time-consuming task. This paper proposes a theoretical foundation for simplified computation of desired invariants. We provide invariant-preserving Petri net reduction rules followed by the conditions for the existence of invariants in various well-structured nets. If an invariant exists, it can be found directly from the net structure using the formulas derived, or by applying the existing techniques on the reduced net.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gonadotropic hormones PMSG (15 IU/rat), FSH (3 mgrg/rat), LH (9 mgrg/rat) and hCG (3 mgrg/rat) were shown to decrease the free cytosolic lysosomal enzymes during the acute phase of hormone action in rat ovaries. When isolated cells from such rats were analyzed for the cathepsin-D activity, the granulosa cells of the ovary showed a reduction in the free as well as in the total lysosomal enzyme activities in response to FSH/PMSG; the stromal and thecal compartment of the ovary showed a reduction only in the free activity in response to hCG/PMSG. The results suggest the presence of two distinct, target cell specific, mechanisms by which the lysosmal activity of the ovary is regulated by gonadotropins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the Segal-Bargmann transform on M(2). The range of this transform is characterized as a weighted Bergman space. In a similar fashion Poisson integrals are investigated. Using a Gutzmer's type formula we characterize the range as a class of functions extending holomorphically to an appropriate domain in the complexification of M(2). We also prove a Paley-Wiener theorem for the inverse Fourier transform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider convolution equations of the type f * T = g, where f, g is an element of L-P (R-n) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T, we show that f is compactly supported, provided g is. Similar results are proved for non-compact symmetric spaces as well. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the Segal-Bargmann transform on a motion group R-n v K, where K is a compact subgroup of SO(n) A characterization of the Poisson integrals associated to the Laplacian on R-n x K is given We also establish a Paley-Wiener type theorem using complexified representations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.