822 resultados para Exercise induced muscle damage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study compared the changes in markers of muscle damage after bouts of resistance exercise employing the Multiple-sets (MS) and Half-pyramid (HP) training systems. Ten healthy men (26.1 +/- 6.3 years), who had been involved in regular resistance training, performed MS and HP bouts, 14 days apart, in a randomised, counter-balanced manner. For the MS bout, participants performed three sets of maximum repetitions at 75%-1RM (i.e. 75% of a One Repetition Maximum) for the three exercises, starting with the bench press, followed by pec deck and decline bench press. For the HP bout, the participants performed three sets of maximum repetitions with 67%-1RM, 74%-1RM and 80%-1RM for the first, second and third sets, respectively, for the same three exercise sequences as the MS bout. The total volume of load lifted was equated between both bouts. Muscle soreness, plasma creatine kinase (CK) activity, myoglobin (Mb) and C-reactive protein (CRP) concentrations were assessed before and for three days after each exercise bout, and the changes over time were compared between MS and HP using two-way repeated measures ANOVA. Muscle soreness developed significantly (P<0.01) after both bouts, but no significant difference was observed between MS and HP. Plasma CK activity and Mb concentration increased significantly (P<0.01) without significant differences between bouts, and CRP concentration did not change significantly after either bout. These results suggest that the muscle damage profile is similar for MS and HP, probably due to the similar total volume of load lifted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: We aimed to evaluate the effects of resistance exercise (RE) and leucine (LEU) supplementation on dexamethasone (DEXA)-induced muscle atrophy and insulin resistance. Methods: Male Wistar rats were randomly divided into DEXA(DEX), DEXA + RE (DEX-RE), DEXA + LEU (DEX-LEU), and DEXA + RE + LEU (DEX-RE-LEU) groups. Each group received DEXA 5 mg . kg(-1) . d(-1) for 7 d from drinking water and were pair-fed to the DEX group; LEU-supplemented groups received 0.135 g . kg(-1) . d(-1) through gavage for 7 d; the RE protocol was based on three sessions of squat-type exercise composed by three sets of 10 repetitions at 70% of maximal voluntary strength capacity. Results: The plantaris mass was significantly greater in both trained groups compared with the non-trained groups. Muscle cross-sectional area and fiber areas did not differ between groups. Both trained groups displayed significant increases in the number of intermediated fibers (IIa/IIx), a decreased number of fast-twitch fibers (IIb), an increased ratio of the proteins phospho(Ser2448)/ total mammalian target of rapamycin and phospho(Thr389)/total 70-kDa ribosomal protein S6 kinase. and a decreased ratio of phospho(Ser253)/total Forkhead box protein-3a. Plasma glucose was significantly increased in the DEX-LEU group compared with the DEX group and RE significantly decreased hyperglycemia. The DEX-LEU group displayed decreased glucose transporter-4 translocation compared with the DEX group and RE restored this response. LEU supplementation worsened insulin sensitivity and did not attenuate muscle wasting in rats treated with DEXA. Conversely, RE modulated glucose homeostasis and fiber type transition in the plantaris muscle. Conclusion: Resistance exercise but not LEU supplementation promoted fiber type transition and improved glucose homeostasis in DEXA-treated rats. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution of neuronal nitric oxide synthase (nNOS) to angiogenesis in human skeletal muscle after endurance exercise is controversially discussed. We therefore ascertained whether the expression of nNOS is associated with the capillary density in biopsies of the vastus lateralis (VL) muscle that had been derived from 10 sedentary male subjects before and after moderate training (four 30-min weekly jogging sessions for 6 months, with a heart-rate corresponding to 75% VO(2)max). In these biopsies, nNOS was predominantly expressed as alpha-isoform with exon-mu and to a lesser extent without exon-mu, as determined by RT-PCR. The mRNA levels of nNOS were quantified by real-time PCR and related to the capillary-to-fibre ratio and the numerical density of capillaries specified by light microscopy. If the VL biopsies of all subjects were co-analysed, mRNA levels of nNOS were non-significantly elevated after training (+34%; P > 0.05). However, only five of the ten subjects exhibited significant (P ≤ 0.05) elevations in the capillary-to-fibre ratio (+25%) and the numerical density of capillaries (+21%) and were thus undergoing angiogenesis. If the VL biopsies of these five subjects alone were evaluated, the mRNA levels of nNOS were significantly up-regulated (+128%; P ≤ 0.05) and correlated positively (r = 0.8; P ≤ 0.01) to angiogenesis. Accordingly, nNOS protein expression in VL biopsies quantified by immunoblotting was significantly increased (+82%; P ≤ 0.05) only in those subjects that underwent angiogenesis. In conclusion, the expression of nNOS at mRNA and protein levels was statistically linked to capillarity after exercise suggesting that nNOS is involved in the angiogenic response to training in human skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Level of physical activity is linked to improved glucose homeostasis. We determined whether exercise alters the expression and/or activity of proteins involved in insulin-signal transduction in skeletal muscle. Wistar rats swam 6 h per day for 1 or 5 days. Epitrochlearis muscles were excised 16 h after the last exercise bout, and were incubated with or without insulin (120 nM). Insulin-stimulated glucose transport increased 30% and 50% after 1 and 5 days of exercise, respectively. Glycogen content increased 2- and 4-fold after 1 and 5 days of exercise, with no change in glycogen synthase expression. Protein expression of the glucose transporter GLUT4 and the insulin receptor increased 2-fold after 1 day, with no further change after 5 days of exercise. Insulin-stimulated receptor tyrosine phosphorylation increased 2-fold after 5 days of exercise. Insulin-stimulated tyrosine phosphorylation of insulin-receptor substrate (IRS) 1 and associated phosphatidylinositol (PI) 3-kinase activity increased 2.5- and 3.5-fold after 1 and 5 days of exercise, despite reduced (50%) IRS-1 protein content after 5 days of exercise. After 1 day of exercise, IRS-2 protein expression increased 2.6-fold and basal and insulin-stimulated IRS-2 associated PI 3-kinase activity increased 2.8-fold and 9-fold, respectively. In contrast to IRS-1, IRS-2 expression and associated PI 3-kinase activity normalized to sedentary levels after 5 days of exercise. Insulin-stimulated Akt phosphorylation increased 5-fold after 5 days of exercise. In conclusion, increased insulin-stimulated glucose transport after exercise is not limited to increased GLUT4 expression. Exercise leads to increased expression and function of several proteins involved in insulin-signal transduction. Furthermore, the differential response of IRS-1 and IRS-2 to exercise suggests that these molecules have specialized, rather than redundant, roles in insulin signaling in skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We sought to determine if the velocity of an acute bout of eccentric contractions influenced the duration and severity of several common indirect markers of muscle damage. Subjects performed 36 maximal fast (FST, n=8: 3.14 rad center dot s(-1)) or slow (SLW, n=7: 0.52 rad center dot s(-1)) velocity isokinetic eccentric contractions with the elbow flexors of the non-dominant arm. Muscle soreness, limb girth, plasma creatine kinase (CK) activity, isometric torque and concentric and eccentric torque at 0.52 and 3.14 rad center dot s(-1) were assessed prior to and for several days following the eccentric bout. Peak plasma CK activity was similar in SLW (4030 +/- 1029 U center dot l(-1)) and FST (5864 +/- 2664 U center dot l(-1)) groups, (p > 0.05). Both groups experienced similar decrement in all strength variables during the 48 hr following the eccentric bout. However, recovery occurred more rapidly in the FST group during eccentric (0.52 and 3.14 rad center dot s(-1)) and concentric (3.14 rad center dot s(-1)) post-testing. The severity of muscle soreness was similar in both groups. However, the FST group experienced peak muscle soreness 48 hr later than the SLW group (24 hr vs. 72 hr). The SLW group experienced a greater increase in upper arm girth than the FST group 20 min, 24 hr and 96 hr following the eccentric exercise bout. The contraction velocity of an acute bout of eccentric exercise differentially influences the magnitude and time course of several indirect markers of muscle damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc: as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and heat stroke. When endotoxaemia can be tolerated or prevented, continuing exercise and heat exposure will elevate Tc to a higher level (> 42 degrees C), where heat stroke may occur through the direct thermal effects of heat on organ tissues and cells. We also discuss the evidence suggesting that heat stroke may occur through endotoxaemia (heat sepsis), the primary pathway of heat stroke, or hyperthermia, the secondary pathway of heat stroke. The existence of these two pathways of heat stroke and the contribution of exercise-induced immune and GI disturbances in the primary pathway of heat stroke are illustrated in the dual pathway model of heat stroke. This model of heat stroke suggests that prolonged intense exercise suppresses anti-LPS mechanisms, and promotes inflammatory and pyrogenic activities in the pathway of heat stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of whole-body cryotherapy (WBC) on proprioceptive function, muscle force recovery following eccentric muscle contractions and tympanic temperature (TTY). Thirty-six subjects were randomly assigned to a group receiving two 3-min treatments of −110 ± 3 °C or 15 ± 3 °C. Knee joint position sense (JPS), maximal voluntary isometric contraction (MVIC) of the knee extensors, force proprioception and TTY were recorded before, immediately after the exposure and again 15 min later. A convenience sample of 18 subjects also underwent an eccentric exercise protocol on their contralateral left leg 24 h before exposure. MVIC (left knee), peak power output (PPO) during a repeated sprint on a cycle ergometer and muscles soreness were measured pre-, 24, 48 and 72 h post-treatment. WBC reduced TTY, by 0.3 °C, when compared with the control group (P<0.001). However, JPS, MVIC or force proprioception was not affected. Similarly, WBC did not effect MVIC, PPO or muscle soreness following eccentric exercise. WBC, administered 24 h after eccentric exercise, is ineffective in alleviating muscle soreness or enhancing muscle force recovery. The results of this study also indicate no increased risk of proprioceptive-related injury following WBC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole body cryotherapy (WBC) involves repeatedly exposing an individual, dressed in minimal clothing, to extremely cold air (–100 to –130°C) for a short period. One specific claim that is often made is that WBC is effective in treating exercise-induced muscle soreness and damage. However, our results suggest that two bouts of WBC were ineffective in improving recovery from eccentric exercise when administered 24 hours after eccentric exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Re-programming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time-course dependent changes in the muscular transcriptome following an endurance exercise trial consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Skeletal muscle samples were taken at baseline, 3 h, 48 h, and 96 h post-exercise from eight healthy, endurance-trained, male individuals. RNA was extracted from muscle. Differential gene expression was evaluated using Illumina microarrays and validated with qPCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Three h post-exercise, 102 gene sets were up-regulated [family wise error rate (FWER), P < 0.05]; including groups of genes related with leukocyte migration, immune and chaperone activation, and cyclic AMP responsive element binding protein (CREB) 1-signaling. Forty-eight h post-exercise, among 19 enriched gene sets (FWER, P < 0.05), two gene sets related to actin cytoskeleton remodeling were up-regulated. Ninety-six h post-exercise, 83 gene sets were enriched (FWER, P < 0.05), 80 of which were up-regulated; including gene groups related to chemokine signaling, cell stress management, and extracellular matrix remodeling. These data provide comprehensive insights into the molecular pathways involved in acute stress, recovery, and adaptive muscular responses to endurance exercise. The novel 96 h post-exercise transcriptome indicates substantial transcriptional activity, potentially associated with the prolonged presence of leukocytes in the muscles. This suggests that muscular recovery, from a transcriptional perspective, is incomplete 96 h after endurance exercise involving muscle damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hormesis enco 16 mpasses the notion that low levels of stress stimulate or upregulate 17 existing cellular and molecular pathways that improve the capacity of cells and organisms to 18 withstand greater stress. This notion underlies much of what we know about how exercise 19 conditions the body and induces long-term adaptations. During exercise, the body is 20 exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and 21 mechanical stress. These stressors activate biochemical messengers, which in turn activate 22 various signaling pathways that regulate gene expression and adaptive responses. 23 Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and 24 cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress 25 and inflammation. However, reactive oxygen species and inflammatory mediators are key 26 signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. 27 Conversely, withholding dietary carbohydrate and restricting muscle blood flow during 28 exercise may augment adaptations to exercise. In this review article, we combine, integrate, 29 and apply knowledge about the fundamental mechanisms of exercise adaptation. We also 30 critically evaluate the rationale for using interventions that target these mechanisms under 31 the overarching concept of hormesis. There is currently insufficient evidence to establish 32 whether these treatments exert dose-dependent effects on muscle adaptation. However, 33 there appears to be some dissociation between the biochemical/molecular effects and 34 functional/performance outcomes of some of these treatments. Although several of these 35 treatments influence common kinases, transcription factors and proteins, it remains to be 36 determined if these interventions complement or negate each other, and whether such 37 effects are strong enough to influence adaptations to exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Completing a marathon is one of the most challenging sports activities, yet the source of running fatigue during this event is not completely understood. The aim of this investigation was to determine the cause(s) of running fatigue during a marathon in warm weather. Methodology/Principal Findings: We recruited 40 amateur runners (34 men and 6 women) for the study. Before the race, body core temperature, body mass, leg muscle power output during a countermovement jump, and blood samples were obtained. During the marathon (27 uC; 27% relative humidity) running fatigue was measured as the pace reduction from the first 5-km to the end of the race. Within 3 min after the marathon, the same pre-exercise variables were obtained. Results: Marathoners reduced their running pace from 3.5 6 0.4 m/s after 5-km to 2.9 6 0.6 m/s at the end of the race (P,0.05), although the running fatigue experienced by the marathoners was uneven. Marathoners with greater running fatigue (. 15% pace reduction) had elevated post-race myoglobin (1318 6 1411 v 623 6 391 mg L21; P,0.05), lactate dehydrogenase (687 6 151 v 583 6 117 U L21; P,0.05), and creatine kinase (564 6 469 v 363 6 158 U L21; P = 0.07) in comparison with marathoners that preserved their running pace reasonably well throughout the race. However, they did not differ in their body mass change (23.1 6 1.0 v 23.0 6 1.0%; P = 0.60) or post-race body temperature (38.7 6 0.7 v 38.9 6 0.9 uC; P = 0.35). Conclusions/Significance: Running pace decline during a marathon was positively related with muscle breakdown blood markers. To elucidate if muscle damage during a marathon is related to mechanistic or metabolic factors requires further investigation.