879 resultados para Evoked potentials (Electrophysiology)
Resumo:
Evoked-potential audiograms were obtained in two (one male and one female) Yangtze finless porpoises, Neophocaena phocaenoides asiaseorientalis. Sinusoidal amplitude-modulated 20-ms tone bursts were used as probes with recording envelope-following evoked potentials. A frequency range of 8 to 152 kHz was investigated. The range of greatest sensitivity covered frequencies from 45 to 139 kHz, and the lowest thresholds of 47.2 and 48.5 dB re: 1 μ Pa were found at a frequency of 54 kHz in the two subjects, respectively. At lower frequencies, threshold increased with a rate of around 14 dB/octave, and threshold steeply increased at 152 kHz. © 2005 Acoustical Society of America.
Resumo:
Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.
Resumo:
Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and high-density recording arrays, steady-state methods have been applied in a broad range of scientific and applied settings.The purpose of this article is to describe the fundamental stimulation paradigms for steady-state visual evoked potentials and to illustrate these principles through research findings across a range of applications in vision science.
Resumo:
Thèse de doctorat réalisé en cotutelle avec l'Université catholique de Louvain, Belgique (Faculté de médecine, Institut de Neuroscience)
Resumo:
Les personnes ayant un trouble du spectre autistique (TSA) manifestent des particularités perceptives. En vision, des travaux influents chez les adultes ont mené à l’élaboration d’un modèle explicatif du fonctionnement perceptif autistique qui suggère que l’efficacité du traitement visuel varie en fonction de la complexité des réseaux neuronaux impliqués (Hypothèse spécifique à la complexité). Ainsi, lorsque plusieurs aires corticales sont recrutées pour traiter un stimulus complexe (e.g., modulations de texture; attributs de deuxième ordre), les adultes autistes démontrent une sensibilité diminuée. À l’inverse, lorsque le traitement repose principalement sur le cortex visuel primaire V1 (e.g., modulations locales de luminance; attributs de premier ordre), leur sensibilité est augmentée (matériel statique) ou intacte (matériel dynamique). Cette dissociation de performance est spécifique aux TSA et peut s’expliquer, entre autre, par une connectivité atypique au sein de leur cortex visuel. Les mécanismes neuronaux précis demeurent néanmoins méconnus. De plus, on ignore si cette signature perceptuelle est présente à l’enfance, information cruciale pour les théories perceptives de l’autisme. Le premier volet de cette thèse cherche à vérifier, à l’aide de la psychophysique et l’électrophysiologie, si la double dissociation de performance entre les attributs statiques de premier et deuxième ordre se retrouve également chez les enfants autistes d’âge scolaire. Le second volet vise à évaluer chez les enfants autistes l’intégrité des connexions visuelles descendantes impliquées dans le traitement des textures. À cet effet, une composante électrophysiologique reflétant principalement des processus de rétroaction corticale a été obtenue lors d’une tâche de ségrégation des textures. Les résultats comportementaux obtenus à l’étude 1 révèlent des seuils sensoriels similaires entre les enfants typiques et autistes à l’égard des stimuli définis par des variations de luminance et de texture. Quant aux données électrophysiologiques, il n’y a pas de différence de groupe en ce qui concerne le traitement cérébral associé aux stimuli définis par des variations de luminance. Cependant, contrairement aux enfants typiques, les enfants autistes ne démontrent pas une augmentation systématique d’activité cérébrale en réponse aux stimuli définis par des variations de texture pendant les fenêtres temporelles préférentiellement associées au traitement de deuxième ordre. Ces différences d’activation émergent après 200 ms et engagent les aires visuelles extrastriées des régions occipito-temporales et pariétales. Concernant la connectivité cérébrale, l’étude 2 indique que les connexions visuelles descendantes sont fortement asymétriques chez les enfants autistes, en défaveur de la région occipito-temporale droite. Ceci diffère des enfants typiques pour qui le signal électrophysiologique reflétant l’intégration visuo-corticale est similaire entre l’hémisphère gauche et droit du cerveau. En somme, en accord avec l’hypothèse spécifique à la complexité, la représentation corticale du traitement de deuxième ordre (texture) est atypiquement diminuée chez les enfants autistes, et un des mécanismes cérébraux impliqués est une altération des processus de rétroaction visuelle entre les aires visuelles de haut et bas niveau. En revanche, contrairement aux résultats obtenus chez les adultes, il n’y a aucun indice qui laisse suggérer la présence de mécanismes supérieurs pour le traitement de premier ordre (luminance) chez les enfants autistes.
Resumo:
Les cortices sensoriels sont des régions cérébrales essentielles pour la perception. En particulier, le cortex visuel traite l’information visuelle en provenance de la rétine qui transite par le thalamus. Les neurones sont les unités fonctionnelles qui transforment l'information sensorielle en signaux électriques, la transfèrent vers le cortex et l'intègrent. Les neurones du cortex visuel sont spécialisés et analysent différents aspects des stimuli visuels. La force des connections entre les neurones peut être modulée par la persistance de l'activité pré-synaptique et induit une augmentation ou une diminution du signal post-synaptique à long terme. Ces modifications de la connectivité synaptique peuvent induire la réorganisation de la carte corticale, c’est à dire la représentation de ce stimulus et la puissance de son traitement cortical. Cette réorganisation est connue sous le nom de plasticité corticale. Elle est particulièrement active durant la période de développement, mais elle s’observe aussi chez l’adulte, par exemple durant l’apprentissage. Le neurotransmetteur acétylcholine (ACh) est impliqué dans de nombreuses fonctions cognitives telles que l’apprentissage ou l’attention et il est important pour la plasticité corticale. En particulier, les récepteurs nicotiniques et muscariniques du sous-type M1 et M2 sont les récepteurs cholinergiques impliqués dans l’induction de la plasticité corticale. L’objectif principal de la présente thèse est de déterminer les mécanismes de plasticité corticale induits par la stimulation du système cholinergique au niveau du télencéphale basal et de définir les effets sur l’amélioration de la perception sensorielle. Afin d’induire la plasticité corticale, j’ai jumelé des stimulations visuelles à des injections intracorticales d’agoniste cholinergique (carbachol) ou à une stimulation du télencéphale basal (neurones cholinergiques qui innervent le cortex visuel primaire). J'ai analysé les potentiels évoqués visuels (PEVs) dans le cortex visuel primaire des rats pendant 4 à 8 heures après le couplage. Afin de préciser l’action de l’ACh sur l’activité des PEVs dans V1, j’ai injecté individuellement l’antagoniste des récepteurs muscariniques, nicotiniques, α7 ou NMDA avant l’infusion de carbachol. La stimulation du système cholinergique jumelée avec une stimulation visuelle augmente l’amplitude des PEVs durant plus de 8h. Le blocage des récepteurs muscarinique, nicotinique et NMDA abolit complètement cette amélioration, tandis que l’inhibition des récepteurs α7 a induit une augmentation instantanée des PEVs. Ces résultats suggèrent que l'ACh facilite à long terme la réponse aux stimuli visuels et que cette facilitation implique les récepteurs nicotiniques, muscariniques et une interaction avec les récepteur NMDA dans le cortex visuel. Ces mécanismes sont semblables à la potentiation à long-terme, évènement physiologique lié à l’apprentissage. L’étape suivante était d’évaluer si l’effet de l’amplification cholinergique de l’entrée de l’information visuelle résultait non seulement en une modification de l’activité corticale mais aussi de la perception visuelle. J’ai donc mesuré l’amélioration de l’acuité visuelle de rats adultes éveillés exposés durant 10 minutes par jour pendant deux semaines à un stimulus visuel de type «réseau sinusoïdal» couplé à une stimulation électrique du télencéphale basal. L’acuité visuelle a été mesurée avant et après le couplage des stimulations visuelle et cholinergique à l’aide d’une tâche de discrimination visuelle. L’acuité visuelle du rat pour le stimulus d’entrainement a été augmentée après la période d’entrainement. L’augmentation de l’acuité visuelle n’a pas été observée lorsque la stimulation visuelle seule ou celle du télencéphale basal seul, ni lorsque les fibres cholinergiques ont été lésées avant la stimulation visuelle. Une augmentation à long terme de la réactivité corticale du cortex visuel primaire des neurones pyramidaux et des interneurones GABAergiques a été montrée par l’immunoréactivité au c-Fos. Ainsi, lorsque couplé à un entrainement visuel, le système cholinergique améliore les performances visuelles pour l’orientation et ce probablement par l’optimisation du processus d’attention et de plasticité corticale dans l’aire V1. Afin d’étudier les mécanismes pharmacologiques impliqués dans l’amélioration de la perception visuelle, j’ai comparé les PEVs avant et après le couplage de la stimulation visuelle/cholinergique en présence d’agonistes/antagonistes sélectifs. Les injections intracorticales des différents agents pharmacologiques pendant le couplage ont montré que les récepteurs nicotiniques et M1 muscariniques amplifient la réponse corticale tandis que les récepteurs M2 muscariniques inhibent les neurones GABAergiques induisant un effet excitateur. L’infusion d’antagoniste du GABA corrobore l’hypothèse que le système inhibiteur est essentiel pour induire la plasticité corticale. Ces résultats démontrent que l’entrainement visuel jumelé avec la stimulation cholinergique améliore la plasticité corticale et qu’elle est contrôlée par les récepteurs nicotinique et muscariniques M1 et M2. Mes résultats suggèrent que le système cholinergique est un système neuromodulateur qui peut améliorer la perception sensorielle lors d’un apprentissage perceptuel. Les mécanismes d’amélioration perceptuelle induits par l’acétylcholine sont liés aux processus d’attention, de potentialisation à long-terme et de modulation de la balance d’influx excitateur/inhibiteur. En particulier, le couplage de l’activité cholinergique avec une stimulation visuelle augmente le ratio de signal / bruit et ainsi la détection de cibles. L’augmentation de la concentration cholinergique corticale potentialise l’afférence thalamocorticale, ce qui facilite le traitement d’un nouveau stimulus et diminue la signalisation cortico-corticale minimisant ainsi la modulation latérale. Ceci est contrôlé par différents sous-types de récepteurs cholinergiques situés sur les neurones GABAergiques ou glutamatergiques des différentes couches corticales. La présente thèse montre qu’une stimulation électrique dans le télencéphale basal a un effet similaire à l’infusion d’agoniste cholinergique et qu’un couplage de stimulations visuelle et cholinergique induit la plasticité corticale. Ce jumelage répété de stimulations visuelle/cholinergique augmente la capacité de discrimination visuelle et améliore la perception. Cette amélioration est corrélée à une amplification de l’activité neuronale démontrée par immunocytochimie du c-Fos. L’immunocytochimie montre aussi une différence entre l’activité des neurones glutamatergiques et GABAergiques dans les différentes couches corticales. L’injection pharmacologique pendant la stimulation visuelle/cholinergique suggère que les récepteurs nicotiniques, muscariniques M1 peuvent amplifier la réponse excitatrice tandis que les récepteurs M2 contrôlent l’activation GABAergique. Ainsi, le système cholinergique activé au cours du processus visuel induit des mécanismes de plasticité corticale et peut ainsi améliorer la capacité perceptive. De meilleures connaissances sur ces actions ouvrent la possibilité d’accélérer la restauration des fonctions visuelles lors d’un déficit ou d’amplifier la fonction cognitive.
Resumo:
Au cours des 25 dernières années, les recherches sur le développement visuel chez l’humain à l’aide de l’électrophysiologie cérébrale et des potentiels évoqués visuels (PEV) ont permis d’explorer plusieurs fonctions associées au cortex visuel. Néanmoins, le développement de certaines d’entre elles (p. ex. segmentation des textures), tout comme les effets de la prématurité sur celles-ci, sont des aspects qui nécessitent d’être davantage étudiés. Par ailleurs, compte tenu de l’importance de la vision dans le développement de certaines fonctions cognitives (p. ex. lecture, visuomotricité), de plus en plus de recherches s’intéressent aux relations entre la vision et la cognition. Les objectifs généraux de la présente thèse étaient d’étudier le développement visuel chez les enfants nés à terme et nés prématurément à l’aide de l’électrophysiologie, puis de documenter les impacts de la prématurité sur le développement visuel et cognitif. Deux études ont été réalisées. La première visait à examiner, chez des enfants nés prématurément, le développement des voies visuelles primaires durant la première année de vie et en début de scolarisation, ainsi qu’à documenter leur profil cognitif et comportemental. À l’aide d’un devis semi-longitudinal, dix enfants nés prématurément ont été évalués à l’âge de six mois (âge corrigé) et à 7-8 ans en utilisant des PEV, et des épreuves cognitives et comportementales à l’âge scolaire. Leurs résultats ont été comparés à ceux de 10 enfants nés à terme appariés pour l’âge. À six mois, aucune différence de latence ou d’amplitude des ondes N1 et P1 n’a été trouvée entre les groupes. À l’âge scolaire, les enfants nés prématurément montraient, comparativement aux enfants nés à terme, une plus grande amplitude de N1 dans la condition P-préférentielle et dans celle co-stimulant les voies M et P, et de P1 (tendance) dans la condition M-préférentielle. Aucune différence n’a été trouvée entre les groupes aux mesures cognitives et comportementales. Ces résultats suggèrent qu’une naissance prématurée exerce un impact sur le développement des voies visuelles centrales. L’objectif de la seconde étude était de documenter le développement des processus de segmentation visuelle des textures durant la petite enfance chez des enfants nés à terme et nés prématurément à l’aide des PEV et d’un devis transversal. Quarante-cinq enfants nés à terme et 43 enfants nés prématurément ont été évalués à 12, 24 ou 36 mois (âge corrigé pour les prématurés à 12 et 24 mois). Les résultats indiquaient une diminution significative de la latence de la composante N2 entre 12 et 36 mois en réponse à l’orientation, à la texture et à la segmentation des textures, ainsi qu’une diminution significative d’amplitude pour l’orientation entre 12 et 24 mois, et pour la texture entre 12 et 24 mois, et 12 et 36 mois. Les comparaisons entre les enfants nés à terme et ceux nés prématurément démontraient une amplitude de N2 réduite chez ces derniers à 12 mois pour l’orientation et la texture. Bien que ces différences ne fussent plus apparentes à 24 mois, nos résultats semblent refléter un délai de maturation des processus visuel de bas et de plus haut niveau chez les enfants nés prématurément, du moins, pendant la petite enfance. En conclusion, nos résultats indiquent que la prématurité, même sans atteinte neurologique importante, altère le développement des fonctions visuelles à certaines périodes du développement et mettent en évidence l’importance d’en investiguer davantage les impacts (p. ex. cognitifs, comportementaux, scolaires) à moyen et long-terme.
Resumo:
L’amblyopie est un trouble développemental de la vision binoculaire. Elle est typiquement caractérisée par des atteintes de l’acuité visuelle et de la stéréoscopie. Toutefois, de plus en plus d’études indiquent la présence d’atteintes plus étendues telles que les difficultés d’attention visuelle ou de lecture. L’amblyopie est généralement expliquée par une suppression interoculaire au niveau cortical, considérée comme chronique ou permanente à l’extérieur de la période développementale. Or, un nombre croissant d’études suggèrent que des interactions binoculaires normales seraient présentes chez les amblyopes adultes. Dans une première étude, nous avons tenté d’identifier un marqueur électrophysiologique de la vision binoculaire. Nous avons enregistré des potentiels évoqués visuels chez des observateurs normaux à qui l’on a induit une dysfonction binoculaire. Les interactions binoculaires étaient caractérisées à l’aide de patrons (facilitation, moyennage et suppression) en comparant les réponses monoculaires et binoculaires. De plus, ces interactions étaient quantifiées à partir d’index d’intégration continus en soustrayant la somme des réponses monoculaires de la réponse binoculaire. Les résultats indiquaient que les patrons d’interaction n’étaient pas optimaux pour estimer les performances stéréoscopiques. Ces dernières étaient, en revanche, mieux expliquées par notre index d’intégration binoculaire. Ainsi, cette étude suggère que l’électrophysiologie est un bon prédicteur de la vision binoculaire. Dans une deuxième étude, nous avons examiné les corrélats neuronaux et comportementaux de la suppression interoculaire chez des amblyopes adultes et des observateurs normaux. Des potentiels évoqués visuels stationnaires ont été enregistrés en utilisant un paradigme de suppression par flash. La suppression était modulée par un changement de contraste du stimulus flash (10, 20, 30, ou 100%), ou le suppresseur, qui était présenté soit dans l’œil dominant ou non-dominant (ou amblyope). Sur le plan comportemental, la suppression interoculaire était observée indépendamment de l’œil stimulé par le flash chez les contrôles. Au contraire, chez les amblyopes, la suppression était asymétrique (c’est-à-dire supérieure lorsqu’elle provenait de l’œil dominant), ce qui suggérait une suppression chronique. De manière intéressante, l’œil amblyope a supprimé l’œil dominant à haut niveau de contraste. Sur le plan électrophysiologique, l’effet de suppression interoculaire observé à la région occipitale était équivalent dans chaque groupe. Toutefois, les réponses électrophysiologiques à la région frontale chez les amblyopes n’étaient pas modulées comme celles des contrôles; la suppression de l’œil amblyope était manifeste même à bas contraste. Nous résultats supportent ainsi l’existence d’interaction binoculaire fonctionnelle chez les amblyopes adultes ainsi que l’implication d’un réseau cortical étendu dans la suppression interoculaire. En somme, l’amblyopie est une condition complexe dont les atteintes corticales et les déficits fonctionnels semblent globaux. L’amblyopie ne doit plus être considérée comme limitée à une dysfonction de l’aire visuelle primaire. La suppression interoculaire semble un point central de cette problématique, mais encore beaucoup d’études seront nécessaires afin de déterminer l’ensemble des mécanismes impliqués dans celle-ci.
Resumo:
Cortical auditory evoked potentials were recorded in cochlear implant recipients and in individuals with normal hearing using a speech stimulus. Responses were acquired over two test sessions to investigate between group differences and test repeatability. Results indicate significant differences in N1-P2 latency and amplitude measures between cochlear implant recipients and individuals with normal hearing.
Resumo:
The silent period is a misunderstood electrophysiological phenomenon leading to several different hypotheses explaining its electrogenesis. It has been studied by different authors and different methodologies giving a wide variability of results, therefore an exact pattern of its normal values does not exist. This work was undertaken to define the normal morphology and duration of the silent period obtained by supramaximal stimulus of the median nerve, during maximum isometric effort of the abductor pollicis brevis muscle against resistance, using 20 adult volunteers without neurological alterations. The normal median duration was 104.6 milliseconds. The same methodology was applied to 20 hands from 20 patients with carpal tunnel syndrome. The silent period showed many types of morphological alterations, but the major alteration observed was a tendency to temporal elongation. No correlation between the severity of the carpal tunnel syndrome and the silent period alterations were observed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To study the components of long latency auditory evoked potentials and to compare data from these measures in students with and without learning disabilities. Method: Thirty students, 15 with learning disorder (study group) and 15 typical without learning problems (control group), of both genders, aged 7-14 years, mean age 10 years. They underwent clinical assessment in a clinic belonging to a public university in the state of São Paulo. Following, audiological assessment was performed to determine normal peripheral auditory system and electrophysiological assessment by examining the long latency auditory evoked response. Result: The results showed that there are functional differences between the groups. Increased latency components of long latency auditory evoked potential was observed in the study group compared to the control group. Longer latency values of these components were observed in the left ear when stimulated in the study group. Conclusion: This study contributed to better understanding of the auditory pathway functioning in children with learning disorders and can be a reference for other clinical and experimental studies and thus improve the definition of diagnostic criteria in this population.
Resumo:
INTRODUCTION: Behavioral and electrophysiological auditory evaluations contribute to the understanding of the auditory system and of the process of intervention. OBJECTIVE: To study P300 in subjects with severe or profound sensorineural hearing loss. METHODS: This was a descriptive cross-sectional prospective study. It included 29 individuals of both genders with severe or profound sensorineural hearing loss without other type of disorders, aged 11 to 42 years; all were assessed by behavioral audiological evaluation and auditory evoked potentials. RESULTS: A recording of the P3 wave was obtained in 17 individuals, with a mean latency of 326.97 ms and mean amplitude of 3.76 V. There were significant differences in latency in relation to age and in amplitude according to degree of hearing loss. There was a statistically significant association of the P300 results with the degrees of hearing loss (p = 0.04), with the predominant auditory communication channels (p < 0.0001), and with time of hearing loss. CONCLUSIONS: P300 can be recorded in individuals with severe and profound congenital sensorineural hearing loss; it may contribute to the understanding of cortical development and is a good predictor of the early intervention outcome.
Resumo:
This study verifies the effects of contralateral noise on otoacoustic emissions and auditory evoked potentials. Short, middle and late auditory evoked potentials as well as otoacoustic emissions with and without white noise were assessed. Twenty-five subjects, normal-hearing, both genders, aged 18 to 30 years, were tested. In general, latencies of the various auditory potentials were increased at noise conditions, whereas amplitudes were diminished at noise conditions for short, middle and late latency responses combined in the same subject. The amplitude of otoacoustic emission decreased significantly in the condition with contralateral noise in comparison to the condition without noise. Our results indicate that most subjects presented different responses between conditions (with and without noise) in all tests, thereby suggesting that the efferent system was acting at both caudal and rostral portions of the auditory system.
Resumo:
The harm upon the central auditory pathways of workers exposed to occupational noise has been scarcely studied. Objective: To assess the central auditory pathways by testing the long latency auditory evoked potentials (P300) of individuals exposed to occupational noise and controls. Method: This prospective study enrolled 25 individuals with normal hearing thresholds. The subjects were divided into two groups: individuals exposed to occupational noise (13 subjects; case group) and individuals not exposed to occupational noise (12 subjects; control group). The P300 test was used with verbal and non-verbal stimuli. Results: No statistically significant differences were found between ears for any of the stimuli or between groups. The groups had no statistically significant difference for verbal or non-verbal stimuli. Case group subjects had longer latencies than controls. In qualitative analysis, a greater number of altered P300 test results for verbal and non-verbal stimuli was seen in the case group, despite the absence of statistically significant differences between case and control subjects. Conclusion: Individuals exposed to high sound pressure levels had longer P300 latencies in verbal and non-verbal stimuli when compared to controls.