859 resultados para Event-trigger
Resumo:
During a major flood event, the inundation of urban environments leads to some complicated flow motion most often associated with significant sediment fluxes. In the present study, a series of field measurements were conducted in an inundated section of the City of Brisbane (Australia) about the peak of a major flood in January 2011. Some experiments were performed to use ADV backscatter amplitude as a surrogate estimate of the suspended sediment concentration (SSC) during the flood event. The flood water deposit samples were predominantly silty material with a median particle size about 25 μm and they exhibited a non-Newtonian behavior under rheological testing. In the inundated urban environment during the flood, estimates of suspended sediment concentration presented a general trend with increasing SSC for decreasing water depth. The suspended sediment flux data showed some substantial sediment flux amplitudes consistent with the murky appearance of floodwaters. Altogether the results highlighted the large suspended sediment loads and fluctuations in the inundated urban setting associated possibly with a non-Newtonian behavior. During the receding flood, some unusual long-period oscillations were observed (periods about 18 min), although the cause of these oscillations remains unknown. The field deployment was conducted in challenging conditions highlighting a number of practical issues during a natural disaster.
Resumo:
This article investigates the role of information communication technologies (ICTs) in establishing a well-aligned, authentic learning environment for a diverse cohort of non-cognate and cognate students studying event management in a higher education context. Based on a case study which examined the way ICTs assisted in accommodating diverse learning needs, styles and stages in an event management subject offered in the Creative Industries Faculty at Queensland University of Technology in Brisbane, Australia, the article uses an action research approach to generate grounded, empirical data on the effectiveness of the dynamic, individualised curriculum frameworks that the use of ICTs makes possible. The study provides insights into the way non-cognate and cognate students respond to different learning tools. It finds that whilst non-cognate and cognate students do respond to learning tools differently, due to a differing degree of emphasis on technical, task or theoretical competencies, the use of ICTs allows all students to improve their performance by providing multiple points of entry into the content. In this respect, whilst the article focuses on the way ICTs can be used to develop an authentic, well-aligned curriculum model that meets the needs of event management students in a higher education context, with findings relevant for event educators in Business, Hospitality, Tourism and Creative Industries, the strategies outlined may also be useful for educators in other fields who are faced with similar challenges when designing and developing curriculum for diverse cohorts.
Resumo:
The rapid increase in the deployment of CCTV systems has led to a greater demand for algorithms that are able to process incoming video feeds. These algorithms are designed to extract information of interest for human operators. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned `normal' model. Many researchers have tried various sets of features to train different learning models to detect abnormal behaviour in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM) to model the normal activities of people. The outliers of the model with insufficient likelihood are identified as abnormal activities. Our Semi-2D HMM is designed to model both the temporal and spatial causalities of the crowd behaviour by assuming the current state of the Hidden Markov Model depends not only on the previous state in the temporal direction, but also on the previous states of the adjacent spatial locations. Two different HMMs are trained to model both the vertical and horizontal spatial causal information. Location features, flow features and optical flow textures are used as the features for the model. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.
Resumo:
Process mining encompasses the research area which is concerned with knowledge discovery from information system event logs. Within the process mining research area, two prominent tasks can be discerned. First of all, process discovery deals with the automatic construction of a process model out of an event log. Secondly, conformance checking focuses on the assessment of the quality of a discovered or designed process model in respect to the actual behavior as captured in event logs. Hereto, multiple techniques and metrics have been developed and described in the literature. However, the process mining domain still lacks a comprehensive framework for assessing the goodness of a process model from a quantitative perspective. In this study, we describe the architecture of an extensible framework within ProM, allowing for the consistent, comparative and repeatable calculation of conformance metrics. For the development and assessment of both process discovery as well as conformance techniques, such a framework is considered greatly valuable.
Resumo:
Free association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist cuing, primed free association, intralist cuing, and single-item recognition tasks. The findings also show that when a related word is presented to cue the recall of a studied word, the cue activates it in an array of related words that distract and reduce the probability of its selection. The activation of the semantic network produces priming benefits during encoding and search costs during retrieval. In extralist cuing recall is a negative function of cue-to-distracter strength and a positive function of neighborhood density, cue-to-target strength, and target-to cue strength. We show how four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks indicating that the contribution of the semantic network varies with the context provided by the task. We evaluate spreading activation and quantum-like entanglement explanations for the priming effect produced by neighborhood density.
Resumo:
In this paper, we propose an approach which attempts to solve the problem of surveillance event detection, assuming that we know the definition of the events. To facilitate the discussion, we first define two concepts. The event of interest refers to the event that the user requests the system to detect; and the background activities are any other events in the video corpus. This is an unsolved problem due to many factors as listed below: 1) Occlusions and clustering: The surveillance scenes which are of significant interest at locations such as airports, railway stations, shopping centers are often crowded, where occlusions and clustering of people are frequently encountered. This significantly affects the feature extraction step, and for instance, trajectories generated by object tracking algorithms are usually not robust under such a situation. 2) The requirement for real time detection: The system should process the video fast enough in both of the feature extraction and the detection step to facilitate real time operation. 3) Massive size of the training data set: Suppose there is an event that lasts for 1 minute in a video with a frame rate of 25fps, the number of frames for this events is 60X25 = 1500. If we want to have a training data set with many positive instances of the event, the video is likely to be very large in size (i.e. hundreds of thousands of frames or more). How to handle such a large data set is a problem frequently encountered in this application. 4) Difficulty in separating the event of interest from background activities: The events of interest often co-exist with a set of background activities. Temporal groundtruth typically very ambiguous, as it does not distinguish the event of interest from a wide range of co-existing background activities. However, it is not practical to annotate the locations of the events in large amounts of video data. This problem becomes more serious in the detection of multi-agent interactions, since the location of these events can often not be constrained to within a bounding box. 5) Challenges in determining the temporal boundaries of the events: An event can occur at any arbitrary time with an arbitrary duration. The temporal segmentation of events is difficult and ambiguous, and also affected by other factors such as occlusions.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways, e.g. for payment systems or assisting the lives of elderly or disabled people. Security threats for these devices become more and more dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level and where third-party developers first time have the opportunity to develop kernel-based low-level security tools. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS, holding the greatest market share among all smartphone OSs, was even closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners privacy. Since signature-based approaches mainly detect known malwares, anomaly-based approaches can be a valuable addition to these systems. They base on mathematical algorithms processing data that describe the state of a certain device. For gaining this data, a monitoring client is needed that has to extract usable information (features) from the monitored system. Our approach follows a dual system for analyzing these features. On the one hand, functionality for on-device light-weight detection is provided. But since most algorithms are resource exhaustive, remote feature analysis is provided on the other hand. Having this dual system enables event-based detection that can react to the current detection need. In our ongoing research we aim to investigates the feasibility of light-weight on-device detection for certain occasions. On other occasions, whenever significant changes are detected on the device, the system can trigger remote detection with heavy-weight algorithms for better detection results. In the absence of the server respectively as a supplementary approach, we also consider a collaborative scenario. Here, mobile devices sharing a common objective are enabled by a collaboration module to share information, such as intrusion detection data and results. This is based on an ad-hoc network mode that can be provided by a WiFi or Bluetooth adapter nearly every smartphone possesses.
Resumo:
Large Igneous Provinces are exceptional intraplate igneous events throughout Earth’s history. Their significance and potential global impact is related to the total volume of magma intruded and released during these geologically brief events (peak eruptions are often within 1-5 Myrs duration) where millions to tens of millions of cubic kilometers of magma are produced. In some cases, at least 1% of the Earth’s surface has been directly covered in volcanic rock, being equivalent to the size of small continents with comparable crustal thicknesses. Large Igneous Provinces are thus important, albeit episodic episodes of new crust addition. However, most magmatism is basaltic so that contributions to crustal growth will not always be picked up in zircon geochronology studies that better trace major episodes of extension-related silicic magmatism and the silicic Large Igneous Provinces. Much headway has been made on our understanding of these anomalous igneous events over the last 25 years, driving many new ideas and models. This includes their: 1) global spatial and temporal distribution, with a long-term average of one event approximately every 20 Myrs, but a clear clustering of events at times of supercontinent break-up – Large Igneous Provinces are thus an integral part of the Wilson cycle and are becoming an increasingly important tool in reconnecting dispersed continental fragments; 2) compositional diversity that in part reflects their crustal setting of ocean basins, and continental interiors and margins where in the latter setting, LIP magmatism can be silicicdominant; 3) mineral and energy resources with major PGE and precious metal resources being hosted in these provinces, as well as magmatism impacting on the hydrocarbon potential of volcanic basins and rifted margins through enhancing source rock maturation, providing fluid migration pathways, and trap formation; 4) biospheric, hydrospheric and atmospheric impacts, with Large Igneous Provinces now widely regarded as a key trigger mechanism for mass extinctions, although the exact kill mechanism(s) are still being resolved; 5) role in mantle geodynamics and thermal evolution of the Earth, by potentially recording the transport of material from the lower mantle or core-mantle boundary to the Earth's surface and being a fundamental component in whole mantle convection models; and 6) recognition on the inner planets where the lack of plate tectonics and erosional processes and planetary antiquity means that the very earliest record of LIP events during planetary evolution may be better preserved than on Earth.
Resumo:
Extracting and aggregating the relevant event records relating to an identified security incident from the multitude of heterogeneous logs in an enterprise network is a difficult challenge. Presenting the information in a meaningful way is an additional challenge. This paper looks at solutions to this problem by first identifying three main transforms; log collection, correlation, and visual transformation. Having identified that the CEE project will address the first transform, this paper focuses on the second, while the third is left for future work. To aggregate by correlating event records we demonstrate the use of two correlation methods, simple and composite. These make use of a defined mapping schema and confidence values to dynamically query the normalised dataset and to constrain result events to within a time window. Doing so improves the quality of results, required for the iterative re-querying process being undertaken. Final results of the process are output as nodes and edges suitable for presentation as a network graph.
Resumo:
Periodontitis results from the destructive inflammatory reaction of the host elicited by a bacterial biofilm adhering to the tooth surface and if left untreated, may lead to the loss of the teeth and the surrounding tissues, including the alveolar bone. Cementum is a specialized calcified tissue covering the tooth root and an essential part of the periodontium which enables the attachment of the periodontal ligament to the root and the surrounding alveolar bone. Periodontal ligament cells (PDLCs) represent a promising cell source for periodontal tissue engineering. Since cementogenesis is the critical event for the regeneration of periodontal tissues, this study examined whether inorganic stimuli derived from bioactive bredigite (Ca7MgSi4O16) bioceramics could stimulate the proliferation and cementogenic differentiation of PDLCs, and further investigated the involvement of the Wnt/β-catenin signalling pathway during this process via analysing gene/protein expression of PDLCs which interacted with bredigite extracts. Our results showed that the ionic products from bredigite powder extracts led to significantly enhanced proliferation and cementogenic differentiation, including mineralization–nodule formation, ALP activity and a series of bone/cementum-related gene/protein expression (ALP, OPN, OCN, BSP, CAP and CEMP1) of PDLCs in a concentration dependent manner. Furthermore, the addition of cardamonin, a Wnt/β-catenin signalling inhibitor, reduced the pro-cementogenesis effect of the bredigite extracts, indicating the involvement of the Wnt/β-catenin signalling pathway in the cementogenesis of PDLCs induced by bredigite extracts. The present study suggests that an entirely inorganic stimulus with a specific composition of bredigite bioceramics possesses the capacity to trigger the activation of the Wnt/β-catenin signalling pathway, leading to stimulated differentiation of PDLCs toward a cementogenic lineage. The results indicate the therapeutic potential of bredigite ceramics in periodontal tissue engineering application.